summaryrefslogtreecommitdiff
path: root/config/picom/shaders/plane.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'config/picom/shaders/plane.glsl')
-rw-r--r--config/picom/shaders/plane.glsl266
1 files changed, 266 insertions, 0 deletions
diff --git a/config/picom/shaders/plane.glsl b/config/picom/shaders/plane.glsl
new file mode 100644
index 0000000..b1c6885
--- /dev/null
+++ b/config/picom/shaders/plane.glsl
@@ -0,0 +1,266 @@
+#version 330
+#define PI 3.14159265
+
+// These shaders work by using a pinhole camera and raycasting
+// The window 3d objects will always be (somewhat) centered at (0, 0, 0)
+struct pinhole_camera
+{
+ float focal_offset; // Distance along the Z axis between the camera
+ // center and the focal point. Use negative values
+ // so the image doesn't flip
+ // This kinda works like FOV in games
+
+ // Transformations
+ // Use these to modify the coordinate system of the camera plane
+ vec3 rotations; // Rotations in radians around each axis
+ // The camera plane rotates around
+ // its center point, not the origin
+
+ vec3 translations; // Translations in pixels along each axis
+
+ vec3 deformations; // Deforms the camera. Higher values on each axis
+ // means the window will be squashed in that axis
+
+ // ---------------------------------------------------------------//
+
+ // "Aftervalues"
+ // These will be set later with setup_camera(), leave them as 0
+ vec3 base_x;
+ vec3 base_y;
+ vec3 base_z;
+ vec3 center_point;
+ vec3 focal_point;
+};
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+uniform float time; // Time in miliseconds.
+
+float time_cyclic = mod(time/10000,2); // Like time, but in seconds and resets to
+ // 0 when it hits 2. Useful for using it in
+ // periodic functions like cos and sine
+// Time variables can be used to change transformations over time
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+
+float window_diagonal = length(window_size); // Diagonal of the window
+// Try to keep focal offset and translations proportional to window_size components
+// or window_diagonal as you see fit
+
+pinhole_camera camera =
+pinhole_camera(-window_size.y/2, // Focal offset
+ vec3(0,0,0), // Rotations
+ vec3(0), // Translations
+ vec3(1,1,1), // Deformations
+ // Leave the rest as 0
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here are some presets you can use
+
+// Moves the camera up and down
+pinhole_camera bobbing =
+pinhole_camera(-window_size.y/2,
+ vec3(0,0,0),
+ vec3(0,cos(time_cyclic*PI)*window_size.y/16,-window_size.y/4),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotates camera around the origin
+// Makes the window rotate around the Y axis from the camera's POV
+// (if the window is centered)
+pinhole_camera rotate_around_origin =
+pinhole_camera(-window_diagonal,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(cos(time_cyclic*PI)*window_diagonal,
+ 0,
+ sin(time_cyclic*PI)*window_diagonal),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotate camera around its center
+pinhole_camera rotate_around_itself =
+pinhole_camera(-window_diagonal,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(0,0,-window_diagonal),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here you can select the preset to use
+pinhole_camera window_cam = rotate_around_origin;
+
+
+
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Sets up a camera by applying transformations and
+// calculating xyz vector basis
+pinhole_camera setup_camera(pinhole_camera camera)
+{
+ // Apply translations
+ camera.center_point += camera.translations;
+
+ // Apply rotations
+ // We initialize our vector basis as normalized vectors
+ // in each axis * our deformations vector
+ camera.base_x = vec3(camera.deformations.x, 0, 0);
+ camera.base_y = vec3(0, camera.deformations.y, 0);
+ camera.base_z = vec3(0, 0, camera.deformations.z);
+
+
+ // Then we rotate them around following our rotations vector:
+ // First save these values to avoid redundancy
+ float cosx = cos(camera.rotations.x);
+ float cosy = cos(camera.rotations.y);
+ float cosz = cos(camera.rotations.z);
+ float sinx = sin(camera.rotations.x);
+ float siny = sin(camera.rotations.y);
+ float sinz = sin(camera.rotations.z);
+
+ // Declare a buffer vector we will use to apply multiple changes at once
+ vec3 tmp = vec3(0);
+
+ // Rotations for base_x:
+ tmp = camera.base_x;
+ // X axis:
+ tmp.y = camera.base_x.y * cosx - camera.base_x.z * sinx;
+ tmp.z = camera.base_x.y * sinx + camera.base_x.z * cosx;
+ camera.base_x = tmp;
+ // Y axis:
+ tmp.x = camera.base_x.x * cosy + camera.base_x.z * siny;
+ tmp.z = -camera.base_x.x * siny + camera.base_x.z * cosy;
+ camera.base_x = tmp;
+ // Z axis:
+ tmp.x = camera.base_x.x * cosz - camera.base_x.y * sinz;
+ tmp.y = camera.base_x.x * sinz + camera.base_x.y * cosz;
+ camera.base_x = tmp;
+
+ // Rotations for base_y:
+ tmp = camera.base_y;
+ // X axis:
+ tmp.y = camera.base_y.y * cosx - camera.base_y.z * sinx;
+ tmp.z = camera.base_y.y * sinx + camera.base_y.z * cosx;
+ camera.base_y = tmp;
+ // Y axis:
+ tmp.x = camera.base_y.x * cosy + camera.base_y.z * siny;
+ tmp.z = -camera.base_y.x * siny + camera.base_y.z * cosy;
+ camera.base_y = tmp;
+ // Z axis:
+ tmp.x = camera.base_y.x * cosz - camera.base_y.y * sinz;
+ tmp.y = camera.base_y.x * sinz + camera.base_y.y * cosz;
+ camera.base_y = tmp;
+
+ // Rotations for base_z:
+ tmp = camera.base_z;
+ // X axis:
+ tmp.y = camera.base_z.y * cosx - camera.base_z.z * sinx;
+ tmp.z = camera.base_z.y * sinx + camera.base_z.z * cosx;
+ camera.base_z = tmp;
+ // Y axis:
+ tmp.x = camera.base_z.x * cosy + camera.base_z.z * siny;
+ tmp.z = -camera.base_z.x * siny + camera.base_z.z * cosy;
+ camera.base_z = tmp;
+ // Z axis:
+ tmp.x = camera.base_z.x * cosz - camera.base_z.y * sinz;
+ tmp.y = camera.base_z.x * sinz + camera.base_z.y * cosz;
+ camera.base_z = tmp;
+
+ // Now that we have our transformed 3d orthonormal base
+ // we can calculate our focal point
+ camera.focal_point = camera.center_point + camera.base_z * camera.focal_offset;
+
+ // Return our set up camera
+ return camera;
+}
+
+vec4 get_pixel_through_camera(vec2 coords, pinhole_camera camera)
+{
+ // Offset coords
+ coords -= window_center;
+
+ // Find the pixel 3d position using the camera vector basis
+ vec3 pixel_3dposition = camera.center_point
+ + coords.x * camera.base_x
+ + coords.y * camera.base_y;
+
+ // Get the vector going from the focal point to the pixel in 3d sapace
+ vec3 focal_vector = pixel_3dposition - camera.focal_point;
+
+ // Let's say we have a plane for our window following the plane equation
+ // ax + by + cz = d
+ float a = 0;
+ float b = 0;
+ float c = 1;
+ float d = 0;
+ // Then there's a line going from our focal point to the plane
+ // which we can describe as:
+ // x(t) = focal_point.x + focal_vector.x * t
+ // y(t) = focal_point.y + focal_vector.y * t
+ // z(t) = focal_point.z + focal_vector.z * t
+ // We substitute x, y and z with x(t), y(t) and z(t) in our plane EQ
+ // Solving for t we get:
+ float t = (d
+ - a*camera.focal_point.x
+ - b*camera.focal_point.y
+ - c*camera.focal_point.z)
+ / (a*focal_vector.x
+ + b*focal_vector.y
+ + c*focal_vector.z);
+
+ // If the point we end up in is behind our camera, don't "render" it
+ if (t < 1)
+ {
+ return vec4(0);
+ }
+
+ // Then we multiply our focal vector by t and add our focal point to it
+ // to end up in a point inside the window plane
+ vec3 intersection = focal_vector * t + camera.focal_point;
+
+ // Save x and y coordinates and add back our initial offset
+ vec2 cam_coords = intersection.xy + window_center;
+
+ // If pixel is outside of our window region
+ // return a completely transparent color
+ if (cam_coords.x >=window_size.x-1 ||
+ cam_coords.y >=window_size.y-1 ||
+ cam_coords.x <=0 || cam_coords.y <=0)
+ {
+ return vec4(0);
+ }
+
+ // Fetch the pixel
+ vec4 pixel = texelFetch(tex, ivec2(cam_coords), 0);
+ return pixel;
+}
+
+vec4 window_shader() {
+ pinhole_camera transformed_cam = setup_camera(window_cam);
+ return(get_pixel_through_camera(texcoord, transformed_cam));
+}