1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
#version 430
bool monochrome = false; // Whether to apply a black & white filter to the window
// You can modify the list of patterns to whatever you like, the code will
// adapt to it as long as it is a list of equally sized 2D arrays
// This example shows a dither pattern list that uses numbers other than
// 0 and 1 for more color variation
// Dither patterns
float dither [][][] = { {{0 , 0 },
{0 , 0 }},
{{0.5, 0 },
{0 , 0 }},
{{0.5, 0 },
{0 , 0.5}},
{{0.5, 0.5},
{0 , 0.5}},
{{0.5, 0.5},
{0.5, 0.5}},
{{1 , 0.5},
{0.5,0.5}},
{{1 , 0.5},
{0.5, 1 }},
{{1 , 1 },
{0.5, 1 }},
{{1 , 1 },
{1 , 1 }} };
// Some more props that depend on the dither patterns
float bit_depth = dither.length() - 1.0;
int block_size = dither[0].length();
in vec2 texcoord; // texture coordinate of the fragment
uniform sampler2D tex; // texture of the window
// Default window post-processing:
// 1) invert color
// 2) opacity / transparency
// 3) max-brightness clamping
// 4) rounded corners
vec4 default_post_processing(vec4 c);
// Returns a monochromatic pixel
vec4 to_monochrome (vec4 pixel)
{
float brightness = (pixel.x + pixel.y + pixel.z)/3;
return vec4(vec3(brightness), pixel.w);
}
vec4 window_shader() {
// Alpha for the current pixel
float alpha;
// Relative block position
ivec2 block_pos;
block_pos.x = int(texcoord.x) % block_size;
block_pos.y = int(texcoord.y) % block_size;
// Current block total color
vec3 block_color = vec3(0,0,0);
// We will iterate over all the pixels in the block
// and save it to this variable
vec4 pixel;
for (int y = 0; y < block_size; y += 1)
{
for (int x = 0; x < block_size; x += 1)
{
// Apply default post processing picom things and
// add color values after.
pixel = texelFetch(tex, ivec2(texcoord.x+x-block_pos.x,texcoord.y+y-block_pos.y), 0);
pixel = default_post_processing(pixel);
if (monochrome)
{
pixel = to_monochrome(pixel);
block_color.x += pixel.x;
}
else
{
block_color.x += pixel.x;
block_color.y += pixel.y;
block_color.z += pixel.z;
}
// If we are on the current pixel, save the alpha value
if (x == 0 && y == 0)
{
alpha = pixel.w;
}
}
}
// Normalize block colors and quantify them
block_color.x = block_color.x/float(block_size*block_size);
block_color.x = round(block_color.x*bit_depth);
// Get the pixel colors using our dither pattern
block_color.x = dither[int(block_color.x)][block_pos.y][block_pos.x];
if (monochrome)
{
block_color.yz = block_color.xx;
}
else
{
block_color.y = block_color.y/float(block_size*block_size);
block_color.y = round(block_color.y*bit_depth);
block_color.z = block_color.z/float(block_size*block_size);
block_color.z = round(block_color.z*bit_depth);
block_color.y = dither[int(block_color.y)][block_pos.y][block_pos.x];
block_color.z = dither[int(block_color.z)][block_pos.y][block_pos.x];
}
// Set the final value for our pixel
pixel = vec4(block_color.x, block_color.y, block_color.z, alpha);
return pixel;
}
|