summaryrefslogtreecommitdiff
path: root/config
diff options
context:
space:
mode:
authordavidovski <david@davidovski.xyz>2025-12-01 10:08:43 +0000
committerdavidovski <david@davidovski.xyz>2025-12-01 10:08:43 +0000
commit0c052ad410ac400b92533e4062d4f8c25cb2c458 (patch)
treeda01ea00ee7e435e95cf98830ce52f7d46c4bd08 /config
parent10ac430505e7880ffd04ee4e12f321cf78de691d (diff)
Add Glitch shade
Diffstat (limited to 'config')
-rw-r--r--config/picom/picom.conf504
-rw-r--r--config/picom/shaders/OldCRT.glsl190
-rw-r--r--config/picom/shaders/cross.glsl335
-rw-r--r--config/picom/shaders/cube.glsl373
-rw-r--r--config/picom/shaders/default_anim.glsl70
-rw-r--r--config/picom/shaders/dither.glsl127
-rw-r--r--config/picom/shaders/glass.glsl165
-rw-r--r--config/picom/shaders/glitch.glsl86
-rw-r--r--config/picom/shaders/glitch_animation.glsl119
-rw-r--r--config/picom/shaders/matrix_dissolve.glsl78
-rw-r--r--config/picom/shaders/pixelize.glsl72
-rwxr-xr-xconfig/picom/shaders/pixelize_median.glsl85
-rw-r--r--config/picom/shaders/plane.glsl266
-rw-r--r--config/picom/shaders/sdf_mask.glsl131
-rw-r--r--config/picom/shaders/shiny.glsl33
-rw-r--r--config/picom/shaders/terminal_vignette.glsl58
16 files changed, 2375 insertions, 317 deletions
diff --git a/config/picom/picom.conf b/config/picom/picom.conf
index 1179a80..d30d4eb 100644
--- a/config/picom/picom.conf
+++ b/config/picom/picom.conf
@@ -1,121 +1,67 @@
#################################
-# Corners #
-#################################
-# requires: https://github.com/sdhand/compton
-corner-radius = 4;
-round-borders = 0;
-
-# Specify a list of border width rules, in the format `PIXELS:PATTERN`,
-# Note we don't make any guarantee about possible conflicts with the
-# border_width set by the window manager.
-#
-# example:
-# round-borders-rule = [ "2:class_g = 'URxvt'" ];
-#
-round-borders-rule = [
-];
-
-#################################
# Shadows #
#################################
-
-# Enabled client-side shadows on windows. Note desktop windows
-# (windows with '_NET_WM_WINDOW_TYPE_DESKTOP') never get shadow,
+# Enabled client-side shadows on windows. Note desktop windows
+# (windows with '_NET_WM_WINDOW_TYPE_DESKTOP') never get shadow,
# unless explicitly requested using the wintypes option.
#
-#shadow = false
+# Can be set per-window using rules.
+#
+# Default: false
shadow = true;
-# The blur radius for shadows, in pixels. (defaults to 12)
-# shadow-radius = 12
-shadow-radius = 20;
-
-# The opacity of shadows. (1.0 - 1.0, defaults to 0.75)
-shadow-opacity = 0.7;
-
-# The left offset for shadows, in pixels. (defaults to -15)
-# shadow-offset-x = -15
-shadow-offset-x = -20;
-
-# The top offset for shadows, in pixels. (defaults to -15)
-# shadow-offset-y = -15
-shadow-offset-y = -20;
-
-# Don't draw shadows on drag-and-drop windows. This option is deprecated,
-# you should use the *wintypes* option in your config file instead.
+# The blur radius for shadows, in pixels.
#
-#no-dnd-shadow = true
-#no-dock-shadow = false
-
-# Red color value of shadow (0.0 - 1.0, defaults to 0).
-#shadow-red = 0.86328125
-
-# Green color value of shadow (0.0 - 1.0, defaults to 0).
-#shadow-green = 0.2109375
-
-# Blue color value of shadow (0.0 - 1.0, defaults to 0).
-#shadow-blue = 0.015625
+# Default: 12
+shadow-radius = 12;
-# Do not paint shadows on shaped windows. Note shaped windows
-# here means windows setting its shape through X Shape extension.
-# Those using ARGB background is beyond our control.
-# Deprecated, use
-# shadow-exclude = 'bounding_shaped'
-# or
-# shadow-exclude = 'bounding_shaped && !rounded_corners'
-# instead.
+# The opacity of shadows.
#
-# shadow-ignore-shaped = ''
+# Range: 0.0 - 1.0
+# Default: 0.75
+# shadow-opacity = .75
-# Specify a list of conditions of windows that should have no shadow.
+# The left offset for shadows, in pixels.
#
-# examples:
-# shadow-exclude = "n:e:Notification";
+# Default: -15
+shadow-offset-x = -7;
+
+# The top offset for shadows, in pixels.
#
-# shadow-exclude = []
-shadow-exclude = [
- "_GTK_FRAME_EXTENTS@:c",
- #"_NET_WM_STATE@:32a"
-];
+# Default: -15
+shadow-offset-y = -7;
-# Specify a X geometry that describes the region in which shadow should not
-# be painted in, such as a dock window region. Use
-# shadow-exclude-reg = "x10+0+0"
-# for example, if the 10 pixels on the bottom of the screen should not have shadows painted on.
+# Hex string color value of shadow. Formatted like "#RRGGBB", e.g. "#C0FFEE".
#
-# shadow-exclude-reg = ""
+# Default: #000000
+# shadow-color = "#000000"
-# Crop shadow of a window fully on a particular Xinerama screen to the screen.
-# xinerama-shadow-crop = false
+# Crop shadow of a window fully on a particular monitor to that monitor. This is
+# currently implemented using the X RandR extension.
+#
+# Default: false
+# crop-shadow-to-monitor = false
#################################
# Fading #
#################################
-
# Fade windows in/out when opening/closing and when opacity changes,
-# unless no-fading-openclose is used.
-# fading = false
-fading = false;
+# unless no-fading-openclose is used. Can be set per-window using rules.
+#
+# Default: false
+fading = true;
# Opacity change between steps while fading in. (0.01 - 1.0, defaults to 0.028)
-# fade-in-step = 0.028
-fade-in-step = 0.03;
+fade-in-step = 0.01;
# Opacity change between steps while fading out. (0.01 - 1.0, defaults to 0.03)
-# fade-out-step = 0.03
-fade-out-step = 0.03;
+fade-out-step = 0.01;
# The time between steps in fade step, in milliseconds. (> 0, defaults to 10)
-fade-delta = 4
-
-# Specify a list of conditions of windows that should not be faded.
-# don't need this, we disable fading for all normal windows with wintypes: {}
-fade-exclude = [
- "class_g = 'slop'" # maim
-]
+fade-delta = 2
# Do not fade on window open/close.
# no-fading-openclose = false
@@ -128,321 +74,245 @@ fade-exclude = [
# Transparency / Opacity #
#################################
-
-# Opacity of inactive windows. (0.1 - 1.0, defaults to 1.0)
-# inactive-opacity = 1
-
-# Opacity of window titlebars and borders. (0.1 - 1.0, disabled by default)
-# frame-opacity = 1.0
-
-# Default opacity for dropdown menus and popup menus. (0.0 - 1.0, defaults to 1.0)
-# menu-opacity = 1.0
-
-# Let inactive opacity set by -i override the '_NET_WM_OPACITY' values of windows.
-# inactive-opacity-override = true
-inactive-opacity-override = true;
-
-# Default opacity for active windows. (0.0 - 1.0, defaults to 1.0)
-active-opacity = 1.0;
-
-# Dim inactive windows. (0.0 - 1.0, defaults to 0.0)
-inactive-dim = 0.0
-
-# Specify a list of conditions of windows that should always be considered focused.
-# focus-exclude = []
-focus-exclude = [
- "class_g = 'slop'" # maim
-];
+# Opacity of window titlebars and borders.
+#
+# Range: 0.1 - 1.0
+# Default: 1.0 (disabled)
+frame-opacity = 0.7;
# Use fixed inactive dim value, instead of adjusting according to window opacity.
-# inactive-dim-fixed = 1.0
-
-# Specify a list of opacity rules, in the format `PERCENT:PATTERN`,
-# like `50:name *= "Firefox"`. picom-trans is recommended over this.
-# Note we don't make any guarantee about possible conflicts with other
-# programs that set '_NET_WM_WINDOW_OPACITY' on frame or client windows.
-# example:
-# opacity-rule = [ "80:class_g = 'URxvt'" ];
#
-# opacity-rule = []
-opacity-rule = [
- "100:class_g = 'slop'", # maim
-];
-
+# Default: false
+# inactive-dim-fixed = true
#################################
-# Background-Blurring #
+# Corners #
#################################
+# Sets the radius of rounded window corners. When > 0, the compositor will
+# round the corners of windows. Does not interact well with
+# `transparent-clipping`.
+#
+# Default: 0 (disabled)
+corner-radius = 0
+
+#################################
+# Blur #
+#################################
-# Parameters for background blurring, see the *BLUR* section for more information.
-# blur-method = gaussian
+# Parameters for background blurring, see BLUR section in the man page for more information.
+# blur-method =
# blur-size = 12
#
# blur-deviation = false
+#
+# blur-strength = 5
-# Blur background of semi-transparent / ARGB windows.
-# Bad in performance, with driver-dependent behavior.
-# The name of the switch may change without prior notifications.
+# Blur background of semi-transparent / ARGB windows.
+# Can be set per-window using rules.
#
-blur-background = true;
+# Default: false
+# blur-background = false
-# Blur background of windows when the window frame is not opaque.
+# Blur background of windows when the window frame is not opaque.
# Implies:
-# blur-background
-# Bad in performance, with driver-dependent behavior. The name may change.
+# blur-background
#
-# blur-background-frame = false;
-
+# Default: false
+# blur-background-frame = false
# Use fixed blur strength rather than adjusting according to window opacity.
-# blur-background-fixed = false;
+#
+# Default: false
+# blur-background-fixed = false
# Specify the blur convolution kernel, with the following format:
# example:
# blur-kern = "5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1";
+# Can also be a pre-defined kernel, see the man page.
#
-# blur-kern = ''
-# blur-kern = "3x3box";
-
-blur: {
- # requires: https://github.com/ibhagwan/picom
- #method = "none";
- method = "kawase";
- strength = 3;
- deviation = 1.0;
- background = true;
- background-frame = false;
- background-fixed = false;
- kern = "3x3box";
-}
-
-# Exclude conditions for background blur.
-blur-background-exclude = [
- "class_g != 'St'",
- "_GTK_FRAME_EXTENTS@:c"
-];
-
+# Default: ""
+blur-kern = "3x3box";
#################################
# General Settings #
#################################
+# Enable remote control via D-Bus. See the man page for more details.
+#
+# Default: false
+# dbus = true
+
# Daemonize process. Fork to background after initialization. Causes issues with certain (badly-written) drivers.
-daemon = true
+# daemon = false
-# Specify the backend to use: `xrender`, `glx`, or `xr_glx_hybrid`.
-# `xrender` is the default one.
+# Specify the backend to use: `xrender`, `glx`, or `egl`.
#
-experimental-backends = true;
-backend = "glx";
-
-vsync = false
+# Default: "xrender"
+backend = "glx"
-# Enable remote control via D-Bus. See the *D-BUS API* section below for more details.
-# dbus = false
+# Use higher precision during rendering, and apply dither when presenting the
+# rendered screen. Reduces banding artifacts, but may cause performance
+# degradation. Only works with OpenGL.
+dithered-present = false;
-# Try to detect WM windows (a non-override-redirect window with no
-# child that has 'WM_STATE') and mark them as active.
+# Enable/disable VSync.
#
-# mark-wmwin-focused = false
-mark-wmwin-focused = true;
-
-# Mark override-redirect windows that doesn't have a child window with 'WM_STATE' focused.
-# mark-ovredir-focused = false
-mark-ovredir-focused = true;
+# Default: false
+vsync = true;
-# Try to detect windows with rounded corners and don't consider them
+# Try to detect windows with rounded corners and don't consider them
# shaped windows. The accuracy is not very high, unfortunately.
#
+# Has nothing to do with `corner-radius`.
+#
+# Default: false
detect-rounded-corners = true;
-# Detect '_NET_WM_OPACITY' on client windows, useful for window managers
-# not passing '_NET_WM_OPACITY' of client windows to frame windows.
+# Detect '_NET_WM_WINDOW_OPACITY' on client windows, useful for window managers
+# not passing '_NET_WM_WINDOW_OPACITY' of client windows to frame windows.
#
-#detect-client-opacity = false
+# Default: false
detect-client-opacity = true;
-# Specify refresh rate of the screen. If not specified or 0, picom will
-# try detecting this with X RandR extension.
-#
-# refresh-rate = 60
-refresh-rate = 0
-
-# Limit picom to repaint at most once every 1 / 'refresh_rate' second to
-# boost performance. This should not be used with
-# vsync drm/opengl/opengl-oml
-# as they essentially does sw-opti's job already,
-# unless you wish to specify a lower refresh rate than the actual value.
-#
-# sw-opti =
-
-# Use EWMH '_NET_ACTIVE_WINDOW' to determine currently focused window,
-# rather than listening to 'FocusIn'/'FocusOut' event. Might have more accuracy,
+# Use EWMH '_NET_ACTIVE_WINDOW' to determine currently focused window,
+# rather than listening to 'FocusIn'/'FocusOut' event. May be more accurate,
# provided that the WM supports it.
#
+# Default: false
# use-ewmh-active-win = false
-# Unredirect all windows if a full-screen opaque window is detected,
-# to maximize performance for full-screen windows. Known to cause flickering
-# when redirecting/unredirecting windows. paint-on-overlay may make the flickering less obvious.
+# Unredirect all windows if a full-screen opaque window is detected,
+# to maximize performance for full-screen windows. Known to cause flickering
+# when redirecting/unredirecting windows.
#
-# unredir-if-possible = true
+# Default: false
+# unredir-if-possible = false
-# Delay before unredirecting the window, in milliseconds. Defaults to 0.
+# Delay before unredirecting the window, in milliseconds.
+#
+# Default: 0.
# unredir-if-possible-delay = 0
-# Conditions of windows that shouldn't be considered full-screen for unredirecting screen.
-# unredir-if-possible-exclude = []
-
-# Use 'WM_TRANSIENT_FOR' to group windows, and consider windows
+# Use 'WM_TRANSIENT_FOR' to group windows, and consider windows
# in the same group focused at the same time.
#
-# detect-transient = false
-detect-transient = true
+# Default: false
+detect-transient = true;
-# Use 'WM_CLIENT_LEADER' to group windows, and consider windows in the same
-# group focused at the same time. 'WM_TRANSIENT_FOR' has higher priority if
-# detect-transient is enabled, too.
+# Use 'WM_CLIENT_LEADER' to group windows, and consider windows in the same
+# group focused at the same time. This usually means windows from the same application
+# will be considered focused or unfocused at the same time.
+# 'WM_TRANSIENT_FOR' has higher priority if detect-transient is enabled, too.
#
+# Default: false
# detect-client-leader = false
-detect-client-leader = true
-# Resize damaged region by a specific number of pixels.
-# A positive value enlarges it while a negative one shrinks it.
-# If the value is positive, those additional pixels will not be actually painted
-# to screen, only used in blur calculation, and such. (Due to technical limitations,
-# with use-damage, those pixels will still be incorrectly painted to screen.)
-# Primarily used to fix the line corruption issues of blur,
-# in which case you should use the blur radius value here
-# (e.g. with a 3x3 kernel, you should use `--resize-damage 1`,
-# with a 5x5 one you use `--resize-damage 2`, and so on).
-# May or may not work with *--glx-no-stencil*. Shrinking doesn't function correctly.
+# Use of damage information for rendering. This cause the only the part of the
+# screen that has actually changed to be redrawn, instead of the whole screen
+# every time. Should improve performance.
#
-# resize-damage = 1
+# Default: false
+use-damage = false;
-# Specify a list of conditions of windows that should be painted with inverted color.
-# Resource-hogging, and is not well tested.
+# Use X Sync fence to wait for the completion of rendering of other windows,
+# before using their content to render the current screen.
#
-# invert-color-include = []
-
-# GLX backend: Avoid using stencil buffer, useful if you don't have a stencil buffer.
-# Might cause incorrect opacity when rendering transparent content (but never
-# practically happened) and may not work with blur-background.
-# My tests show a 15% performance boost. Recommended.
+# Required for explicit sync drivers, such as nvidia.
#
-# glx-no-stencil = false
+# Default: false
+# xrender-sync-fence = false
-# GLX backend: Avoid rebinding pixmap on window damage.
-# Probably could improve performance on rapid window content changes,
-# but is known to break things on some drivers (LLVMpipe, xf86-video-intel, etc.).
-# Recommended if it works.
+# GLX backend: Use specified GLSL fragment shader for rendering window
+# contents. Read the man page for a detailed explanation of the interface.
#
-# glx-no-rebind-pixmap = false
-
-# Disable the use of damage information.
-# This cause the whole screen to be redrawn everytime, instead of the part of the screen
-# has actually changed. Potentially degrades the performance, but might fix some artifacts.
-# The opposing option is use-damage
-#
-# no-use-damage = false
-use-damage = true
-
-# Use X Sync fence to sync clients' draw calls, to make sure all draw
-# calls are finished before picom starts drawing. Needed on nvidia-drivers
-# with GLX backend for some users.
+# Can be set per-window using rules.
#
-xrender-sync-fence = true
+window-shader-fg = "~/.config/picom/shaders/glitch_animation.glsl"
-# GLX backend: Use specified GLSL fragment shader for rendering window contents.
-# See `compton-default-fshader-win.glsl` and `compton-fake-transparency-fshader-win.glsl`
-# in the source tree for examples.
-#
-# glx-fshader-win = ''
-
-# Force all windows to be painted with blending. Useful if you
-# have a glx-fshader-win that could turn opaque pixels transparent.
+# Force all windows to be painted with blending. Useful if you
+# have a `window-shader-fg` that could turn opaque pixels transparent.
#
+# Default: false
# force-win-blend = false
-# Do not use EWMH to detect fullscreen windows.
+# Do not use EWMH to detect fullscreen windows.
# Reverts to checking if a window is fullscreen based only on its size and coordinates.
#
+# Default: false
# no-ewmh-fullscreen = false
-# Dimming bright windows so their brightness doesn't exceed this set value.
-# Brightness of a window is estimated by averaging all pixels in the window,
-# so this could comes with a performance hit.
-# Setting this to 1.0 disables this behaviour. Requires --use-damage to be disabled. (default: 1.0)
+# Dimming bright windows so their brightness doesn't exceed this set value.
+# Brightness of a window is estimated by averaging all pixels in the window,
+# so this could comes with a performance hit.
+# Setting this to 1.0 disables this behaviour. Requires --use-damage to be disabled.
#
+# Default: 1.0 (disabled)
# max-brightness = 1.0
# Make transparent windows clip other windows like non-transparent windows do,
-# instead of blending on top of them.
+# instead of blending on top of them. e.g. placing a transparent window on top
+# of another window will cut a "hole" in that window, and show the desktop background
+# underneath.
#
+# Default: false
# transparent-clipping = false
# Set the log level. Possible values are:
# "trace", "debug", "info", "warn", "error"
-# in increasing level of importance. Case doesn't matter.
-# If using the "TRACE" log level, it's better to log into a file
+# in increasing level of importance. Case insensitive.
+# If using the "TRACE" log level, it's better to log into a file
# using *--log-file*, since it can generate a huge stream of logs.
#
-# log-level = "debug"
-log-level = "info";
+# Default: "warn"
+# log-level = "warn";
# Set the log file.
-# If *--log-file* is never specified, logs will be written to stderr.
-# Otherwise, logs will to written to the given file, though some of the early
-# logs might still be written to the stderr.
+# If *--log-file* is never specified, logs will be written to stderr.
+# Otherwise, logs will to written to the given file, though some of the early
+# logs might still be written to the stderr.
# When setting this option from the config file, it is recommended to use an absolute path.
#
-# log-file = '/path/to/your/log/file'
-
-# Show all X errors (for debugging)
-# show-all-xerrors = false
+# log-file = "/path/to/your/log/file"
# Write process ID to a file.
-# write-pid-path = '/path/to/your/log/file'
-
-# Window type settings
-#
-# 'WINDOW_TYPE' is one of the 15 window types defined in EWMH standard:
-# "unknown", "desktop", "dock", "toolbar", "menu", "utility",
-# "splash", "dialog", "normal", "dropdown_menu", "popup_menu",
-# "tooltip", "notification", "combo", and "dnd".
-#
-# Following per window-type options are available: ::
-#
-# fade, shadow:::
-# Controls window-type-specific shadow and fade settings.
-#
-# opacity:::
-# Controls default opacity of the window type.
-#
-# focus:::
-# Controls whether the window of this type is to be always considered focused.
-# (By default, all window types except "normal" and "dialog" has this on.)
-#
-# full-shadow:::
-# Controls whether shadow is drawn under the parts of the window that you
-# normally won't be able to see. Useful when the window has parts of it
-# transparent, and you want shadows in those areas.
-#
-# redir-ignore:::
-# Controls whether this type of windows should cause screen to become
-# redirected again after been unredirected. If you have unredir-if-possible
-# set, and doesn't want certain window to cause unnecessary screen redirection,
-# you can set this to `true`.
-#
-wintypes:
-{
- normal = { fade = true; shadow = true;}
- tooltip = { fade = true; shadow = true; opacity = 0.75; focus = true; full-shadow = false; };
- dock = { full-shadow = true; }
- dnd = { shadow = true; }
- popup_menu = { shadow = true; }
- dropdown_menu = { shadow = true; }
-};
-unredir-if-possible = false
+# write-pid-path = "/path/to/your/log/file"
+
+# Rule-based per-window options.
+#
+# See WINDOW RULES section in the man page for how these work.
+rules: ({
+ match = "window_type = 'tooltip'";
+ fade = false;
+ shadow = true;
+ opacity = 0.9;
+ full-shadow = false;
+}, {
+ match = "window_type = 'dock' || "
+ "window_type = 'desktop' || "
+ "_GTK_FRAME_EXTENTS@";
+ blur-background = false;
+}, {
+ match = "window_type != 'dock'";
+ # shader = "my_shader.frag";
+}, {
+ match = "window_type = 'dock' || "
+ "window_type = 'desktop'";
+ corner-radius = 0;
+}, {
+ match = "name = 'Notification' || "
+ "class_g = 'Conky' || "
+ "class_g ?= 'Notify-osd' || "
+ "class_g = 'Cairo-clock' || "
+ "_GTK_FRAME_EXTENTS@";
+ shadow = false;
+})
+
+# `@include` directive can be used to include additional configuration files.
+# Relative paths are search either in the parent of this configuration file
+# (when the configuration is loaded through a symlink, the symlink will be
+# resolved first). Or in `$XDG_CONFIG_HOME/picom/include`.
+#
+# @include "extra.conf"
+
diff --git a/config/picom/shaders/OldCRT.glsl b/config/picom/shaders/OldCRT.glsl
new file mode 100644
index 0000000..6e02812
--- /dev/null
+++ b/config/picom/shaders/OldCRT.glsl
@@ -0,0 +1,190 @@
+#version 430
+#define PI 3.1415926538
+uniform float opacity;
+uniform float time;
+
+// Works best with fullscreen windows
+// Made this to play retro games the way god intended
+
+uniform float sc_freq = 0.2; // Frequency for the scanlines
+
+uniform float sc_intensity = 0.6; // Intensity of the scanline effect
+
+uniform bool grid = false; // Whether to also apply scanlines to x axis or not
+
+uniform int distortion_offset = 2; // Pixel offset for red/blue distortion
+
+uniform int downscale_factor = 2; // How many pixels of the window
+ // make an actual "pixel" (or block)
+
+uniform float sph_distance = 500; // Distance from the theoretical sphere
+ // we use for our curvature transform
+
+uniform float curvature = 1.5; // How much the window should "curve"
+
+uniform float shadow_cutoff = 1; // How "early" the shadow starts affecting
+ // pixels close to the edges
+ // I'd keep this value very close to 1
+
+uniform int shadow_intensity = 1; // Intensity level of the shadow effect (from 1 to 5)
+
+vec4 outside_color = vec4(0 ,0 ,0, opacity); // Color for the outside of the window
+
+float flash_speed = 0; // Speed of flashing effect, set to 0 to deactivate
+
+float flash_intensity = 0.8; // Intensity of flashing effect
+
+
+// You can play with different values for all the variables above
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+ivec2 window_size = textureSize(tex, 0);
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+float radius = (window_size.x/curvature);
+int flash = int(round(flash_speed*time/(10000/window_size.y))) % window_size.y;
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Darkens a pixels near the edges
+vec4 darken_color(vec4 color, vec2 coords)
+{
+ // If shadow intensity is 0, change nothing
+ if (shadow_intensity == 0)
+ {
+ return color;
+ }
+
+ // Get how far the coords are from the center
+ vec2 distances_from_center = abs(window_center - coords);
+
+ // Darken pixels close to the edges of the screen in a polynomial fashion
+ float brightness = 1;
+ brightness *= -pow((distances_from_center.y/window_center.y)*shadow_cutoff,
+ (5/shadow_intensity)*2)+1;
+ brightness *= -pow((distances_from_center.x/window_center.x)*shadow_cutoff,
+ (5/shadow_intensity)*2)+1;
+ color.xyz *= brightness;
+
+ return color;
+}
+
+// Applies a transformation to our window pixels to simulate
+// a curved screen
+ivec2 curve_coords_spheric(vec2 coords)
+{
+ // Offset coords
+ coords -= window_center;
+ vec2 curved_coords;
+
+ // For this transform imagine a sphere in a 3d space with the
+ // window as a 2d plane tangent to that sphere
+ // For simplicity, we center the sphere at 0,0,0
+ // The coordinates of the projection share x and y with our window pixel
+ // We find Z using the formula for a sphere
+ vec3 projection_coords3d = vec3(coords.x, coords.y,
+ sqrt(pow(radius+sph_distance,2)-
+ pow(coords.x,2)-
+ pow(coords.y,2)));
+
+ // That vector goes from the center of the sphere to the projection of a pixel
+ // of our window onto the sphere's surface
+ // Let's scale it until it hits our window plane
+ projection_coords3d *= ((radius+sph_distance)/projection_coords3d.z);
+ curved_coords = projection_coords3d.xy;
+
+ // Compensate for starting coords offset
+ curved_coords += window_center;
+
+ return ivec2(curved_coords);
+}
+
+
+// Gets a color for a pixel with all the coordinate and
+// downscale changes
+vec4 get_pixel(vec2 coords)
+{
+ // If pixel is at the edge of the window, return a completely black color
+ if (coords.x >=window_size.x-1 || coords.y >=window_size.y-1 ||
+ coords.x <=0 || coords.y <=0)
+ {
+ return outside_color;
+ }
+ vec4 color = texelFetch(tex, ivec2(coords), 0);
+ return default_post_processing(color);
+}
+
+// Gets the color from a downscaled block
+vec4 get_block_color(vec2 coords)
+{
+ // If downscale is set to 1, just return a pixel
+ if (downscale_factor < 2)
+ {
+ return get_pixel(coords);
+ }
+
+ // Relative position of pixel inside the block
+ ivec2 relative_position;
+ relative_position.xy = ivec2(coords).xy % downscale_factor;
+
+ // Average all colors from pixels inside the block
+ vec4 average = vec4(0, 0 , 0, 0);
+ for (int i = 0; i < downscale_factor; i++)
+ {
+ for (int j = 0; j < downscale_factor; j++)
+ {
+ average.xyzw += get_pixel(vec2(coords.x + i - relative_position.x,
+ coords.y + j - relative_position.y));
+ }
+ }
+ average /= pow(downscale_factor, 2);
+
+ return average;
+}
+
+
+// Main shader function
+vec4 window_shader() {
+
+ // Apply curvature transform to coords
+ vec2 curved_coords = curve_coords_spheric(texcoord);
+
+ // Fetch the color
+ vec4 c = get_block_color(curved_coords);
+
+ // Fetch colors from close pixels to apply color distortion
+ vec4 c_right = get_block_color(vec2(curved_coords.x+2, curved_coords.y));
+ vec4 c_left = get_block_color(vec2(curved_coords.x-2, curved_coords.y));
+
+ // Mix red and blue colors
+ c = vec4(c_left.x, c.y, c_right.z, c.w);
+
+ // Apply scanlines
+ c.xyz *= sin(2*PI*sc_freq*(texcoord).y)/(2/sc_intensity) +
+ 1 - sc_intensity/2;
+
+ // Also apply scanlines to x axis if grid is enabled
+ if (grid == true)
+ {
+ c.xyz *= sin(2*PI*sc_freq*(texcoord).x)/(2/sc_intensity) +
+ 1 - sc_intensity/2;
+ }
+
+ // Apply flash
+ if (curved_coords.y >=flash-(window_size.y/10) && curved_coords.y <=flash)
+ {
+ c.xyz *= flash_intensity*(pow(((flash-curved_coords.y)/(window_size.y/10))-1,2)
+ + 1/flash_intensity);
+ }
+
+ // Darken pixel
+ c = darken_color(c, curved_coords);
+ return (c);
+}
diff --git a/config/picom/shaders/cross.glsl b/config/picom/shaders/cross.glsl
new file mode 100644
index 0000000..2241508
--- /dev/null
+++ b/config/picom/shaders/cross.glsl
@@ -0,0 +1,335 @@
+#version 430
+#define PI 3.14159265
+
+// These shaders work by using a pinhole camera and raycasting
+// The window 3d objects will always be (somewhat) centered at (0, 0, 0)
+struct pinhole_camera
+{
+ float focal_offset; // Distance along the Z axis between the camera
+ // center and the focal point. Use negative values
+ // so the image doesn't flip
+ // This kinda works like FOV in games
+
+ // Transformations
+ // Use these to modify the coordinate system of the camera plane
+ vec3 rotations; // Rotations in radians around each axis
+ // The camera plane rotates around
+ // its center point, not the origin
+
+ vec3 translations; // Translations in pixels along each axis
+
+ vec3 deformations; // Deforms the camera. Higher values on each axis
+ // means the window will be squashed in that axis
+
+ // ---------------------------------------------------------------//
+
+ // "Aftervalues"
+ // These will be set later with setup_camera(), leave them as 0
+ vec3 base_x;
+ vec3 base_y;
+ vec3 base_z;
+ vec3 center_point;
+ vec3 focal_point;
+};
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+uniform float time; // Time in miliseconds.
+
+float time_cyclic = mod(time/10000,2); // Like time, but in seconds and resets to
+ // 0 when it hits 2. Useful for using it in
+ // periodic functions like cos and sine
+// Time variables can be used to change transformations over time
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+
+float window_diagonal = length(window_size); // Diagonal of the window
+// Try to keep focal offset and translations proportional to window_size components
+// or window_diagonal as you see fit
+
+pinhole_camera camera =
+pinhole_camera(-window_size.y/2, // Focal offset
+ vec3(0,0,0), // Rotations
+ vec3(0,0,0), // Translations
+ vec3(1,1,1), // Deformations
+ // Leave the rest as 0
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here are some presets you can use
+
+// Moves the camera up and down
+pinhole_camera bobbing =
+pinhole_camera(-window_size.y/2,
+ vec3(0,0,0),
+ vec3(0,cos(time_cyclic*PI)*window_size.y/16,-window_size.y/4),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotates camera around the origin
+// Makes the window rotate around the Y axis from the camera's POV
+// (if the window is centered)
+pinhole_camera rotate_around_origin =
+pinhole_camera(-window_diagonal,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(cos(time_cyclic*PI)*window_diagonal,
+ 0,
+ sin(time_cyclic*PI)*window_diagonal),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotate camera around its center
+pinhole_camera rotate_around_itself =
+pinhole_camera(-window_diagonal,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(0,0,-window_diagonal),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here you can select the preset to use
+pinhole_camera window_cam = rotate_around_origin;
+
+
+
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Sets up a camera by applying transformations and
+// calculating xyz vector basis
+pinhole_camera setup_camera(pinhole_camera camera)
+{
+ // Apply translations
+ camera.center_point += camera.translations;
+
+ // Apply rotations
+ // We initialize our vector basis as normalized vectors
+ // in each axis * our deformations vector
+ camera.base_x = vec3(camera.deformations.x, 0, 0);
+ camera.base_y = vec3(0, camera.deformations.y, 0);
+ camera.base_z = vec3(0, 0, camera.deformations.z);
+
+
+ // Then we rotate them around following our rotations vector:
+ // First save these values to avoid redundancy
+ float cosx = cos(camera.rotations.x);
+ float cosy = cos(camera.rotations.y);
+ float cosz = cos(camera.rotations.z);
+ float sinx = sin(camera.rotations.x);
+ float siny = sin(camera.rotations.y);
+ float sinz = sin(camera.rotations.z);
+
+ // Declare a buffer vector we will use to apply multiple changes at once
+ vec3 tmp = vec3(0);
+
+ // Rotations for base_x:
+ tmp = camera.base_x;
+ // X axis:
+ tmp.y = camera.base_x.y * cosx - camera.base_x.z * sinx;
+ tmp.z = camera.base_x.y * sinx + camera.base_x.z * cosx;
+ camera.base_x = tmp;
+ // Y axis:
+ tmp.x = camera.base_x.x * cosy + camera.base_x.z * siny;
+ tmp.z = -camera.base_x.x * siny + camera.base_x.z * cosy;
+ camera.base_x = tmp;
+ // Z axis:
+ tmp.x = camera.base_x.x * cosz - camera.base_x.y * sinz;
+ tmp.y = camera.base_x.x * sinz + camera.base_x.y * cosz;
+ camera.base_x = tmp;
+
+ // Rotations for base_y:
+ tmp = camera.base_y;
+ // X axis:
+ tmp.y = camera.base_y.y * cosx - camera.base_y.z * sinx;
+ tmp.z = camera.base_y.y * sinx + camera.base_y.z * cosx;
+ camera.base_y = tmp;
+ // Y axis:
+ tmp.x = camera.base_y.x * cosy + camera.base_y.z * siny;
+ tmp.z = -camera.base_y.x * siny + camera.base_y.z * cosy;
+ camera.base_y = tmp;
+ // Z axis:
+ tmp.x = camera.base_y.x * cosz - camera.base_y.y * sinz;
+ tmp.y = camera.base_y.x * sinz + camera.base_y.y * cosz;
+ camera.base_y = tmp;
+
+ // Rotations for base_z:
+ tmp = camera.base_z;
+ // X axis:
+ tmp.y = camera.base_z.y * cosx - camera.base_z.z * sinx;
+ tmp.z = camera.base_z.y * sinx + camera.base_z.z * cosx;
+ camera.base_z = tmp;
+ // Y axis:
+ tmp.x = camera.base_z.x * cosy + camera.base_z.z * siny;
+ tmp.z = -camera.base_z.x * siny + camera.base_z.z * cosy;
+ camera.base_z = tmp;
+ // Z axis:
+ tmp.x = camera.base_z.x * cosz - camera.base_z.y * sinz;
+ tmp.y = camera.base_z.x * sinz + camera.base_z.y * cosz;
+ camera.base_z = tmp;
+
+ // Now that we have our transformed 3d orthonormal base
+ // we can calculate our focal point
+ camera.focal_point = camera.center_point + camera.base_z * camera.focal_offset;
+
+ // Return our set up camera
+ return camera;
+}
+
+// Gets a pixel from the end of a ray projected to an axis
+vec4 get_pixel_from_projection(float t, int face, pinhole_camera camera, vec3 focal_vector)
+{
+ // If the point we end up in is behind our camera, don't "render" it
+ if (t < 1)
+ {
+ return vec4(0);
+ }
+
+ // Then we multiply our focal vector by t and add our focal point to it
+ // to end up in a point inside the window plane
+ vec3 intersection = focal_vector * t + camera.focal_point;
+
+
+ // Save a the necessary coordinates and add back offset
+ vec2 cam_coords;
+ switch (face)
+ {
+ case 0:
+ cam_coords = intersection.xy + window_center;
+ break;
+ case 1:
+ cam_coords = intersection.zy + window_center;
+ break;
+ }
+
+ // If pixel is outside of our window region
+ // return a completely transparent color
+ if (cam_coords.x >=window_size.x-1 ||
+ cam_coords.y >=window_size.y-1 ||
+ cam_coords.x <=0 || cam_coords.y <=0)
+ {
+ return vec4(0);
+ }
+
+ // Fetch the pixel
+ vec4 pixel = texelFetch(tex, ivec2(cam_coords), 0);
+ return pixel;
+}
+
+// Combines colors using alpha
+// Got this from https://stackoverflow.com/questions/64701745/how-to-blend-colours-with-transparency
+// Not sure how it works honestly lol
+vec4 alpha_composite(vec4 color1, vec4 color2)
+{
+
+ float ar = color1.w + color2.w - (color1.w * color2.w);
+ float asr = color2.w / ar;
+ float a1 = 1 - asr;
+ float a2 = asr * (1 - color1.w);
+ float ab = asr * color1.w;
+ vec4 outcolor;
+ outcolor.xyz = color1.xyz * a1 + color2.xyz * a2 + color2.xyz * ab;
+ outcolor.w = ar;
+ return outcolor;
+
+}
+
+// Gets a pixel through the camera using coords as coordinates in
+// the camera plane
+vec4 get_pixel_through_camera(vec2 coords, pinhole_camera camera)
+{
+ // Offset coords
+ coords -= window_center;
+
+ // Find the pixel 3d position using the camera vector basis
+ vec3 pixel_3dposition = camera.center_point
+ + coords.x * camera.base_x
+ + coords.y * camera.base_y;
+
+ // Get the vector going from the focal point to the pixel in 3d sapace
+ vec3 focal_vector = pixel_3dposition - camera.focal_point;
+
+ // We need 2 planes, one for each axis of the cross, they all follow the plane EQ
+ // ax + by + cz + d
+ float a[] = {0,1};
+ float b[] = {0,0};
+ float c[] = {1,0};
+ float d[] = {0,0};
+ // Then there's a line going from our focal point to each of the planes
+ // which we can describe as:
+ // x(t) = focal_point.x + focal_vector.x * t
+ // y(t) = focal_point.y + focal_vector.y * t
+ // z(t) = focal_point.z + focal_vector.z * t
+ // We substitute x, y and z with x(t), y(t) and z(t) in the plane EQ
+ // Solving for t we get:
+ vec2 t[2]; // we use a vec2 to also store the plane that was hit
+ for (int i = 0; i < 2; i++)
+ {
+ t[i].x = (d[i]
+ - a[i]*camera.focal_point.x
+ - b[i]*camera.focal_point.y
+ - c[i]*camera.focal_point.z)
+ / (a[i]*focal_vector.x
+ + b[i]*focal_vector.y
+ + c[i]*focal_vector.z);
+ t[i].y = i;
+ }
+
+ // Bubble sort to know which intersections happen first
+ for (int i = 0; i < t.length(); i++)
+ {
+ for (int j = 0; j < t.length(); j++)
+ {
+ if (t [j].x > t[j+1].x)
+ {
+ vec2 tmp = t[j];
+ t[j] = t[j+1];
+ t[j+1] = tmp;
+ }
+ }
+ }
+
+ // Then we go through each one of the intersections in order
+ // and mix pixels together using alpha
+ vec4 blended_pixels = vec4(0);
+ for (int i = 0; i < 2; i++)
+ {
+ // We get the pixel through projection
+ vec4 projection_pixel = get_pixel_from_projection(t[i].x,
+ int(t[i].y),
+ camera,
+ focal_vector);
+ // Blend the pixel using alpha
+ blended_pixels = alpha_composite(projection_pixel, blended_pixels);
+ }
+ return blended_pixels;
+}
+
+// Main function
+vec4 window_shader() {
+ pinhole_camera transformed_cam = setup_camera(window_cam);
+ return(get_pixel_through_camera(texcoord, transformed_cam));
+}
diff --git a/config/picom/shaders/cube.glsl b/config/picom/shaders/cube.glsl
new file mode 100644
index 0000000..8988a7d
--- /dev/null
+++ b/config/picom/shaders/cube.glsl
@@ -0,0 +1,373 @@
+#version 430
+#define PI 3.14159265
+
+// These shaders work by using a pinhole camera and raycasting
+// The window 3d objects will always be (somewhat) centered at (0, 0, 0)
+struct pinhole_camera
+{
+ float focal_offset; // Distance along the Z axis between the camera
+ // center and the focal point. Use negative values
+ // so the image doesn't flip
+ // This kinda works like FOV in games
+
+ // Transformations
+ // Use these to modify the coordinate system of the camera plane
+ vec3 rotations; // Rotations in radians around each axis
+ // The camera plane rotates around
+ // its center point, not the origin
+
+ vec3 translations; // Translations in pixels along each axis
+
+ vec3 deformations; // Deforms the camera. Higher values on each axis
+ // means the window will be squashed in that axis
+
+ // ---------------------------------------------------------------//
+
+ // "Aftervalues"
+ // These will be set later with setup_camera(), leave them as 0
+ vec3 base_x;
+ vec3 base_y;
+ vec3 base_z;
+ vec3 center_point;
+ vec3 focal_point;
+};
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+uniform float time; // Time in miliseconds.
+
+float time_cyclic = mod(time/10000,2); // Like time, but in seconds and resets to
+ // 0 when it hits 2. Useful for using it in
+ // periodic functions like cos and sine
+
+// Time variables can be used to change transformations over time
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+
+float window_diagonal = length(window_size); // Diagonal of the window
+
+int wss = min(window_size.x, window_size.y); // Window smallest side, useful when squaring windows
+// Try to keep focal offset and translations proportional to window_size components
+// or window_diagonal as you see fit
+
+pinhole_camera camera =
+pinhole_camera(-window_size.y/2, // Focal offset
+ vec3(0,0,0), // Rotations
+ vec3(0,0,0), // Translations
+ vec3(1,1,1), // Deformations
+ // Leave the rest as 0
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here are some presets you can use
+
+// Moves the camera up and down
+pinhole_camera bobbing =
+pinhole_camera(-window_size.y/2,
+ vec3(0,0,0),
+ vec3(0,cos(time_cyclic*PI)*window_size.y/16,-window_size.y/4),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotates camera around the origin
+// Makes the window rotate around the Y axis from the camera's POV
+// (if the window is centered)
+pinhole_camera rotate_around_origin =
+pinhole_camera(-wss,
+ vec3(PI/6*sin(2*time_cyclic*PI),-time_cyclic*PI-PI/2,0),
+ vec3(cos(time_cyclic*PI)*wss,
+ wss/2*sin(2*time_cyclic*PI),
+ sin(time_cyclic*PI)*wss),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotate camera around its center
+pinhole_camera rotate_around_itself =
+pinhole_camera(-wss,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(0,0,-wss),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here you can select the preset to use
+pinhole_camera window_cam = rotate_around_origin;
+
+
+
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Sets up a camera by applying transformations and
+// calculating xyz vector basis
+pinhole_camera setup_camera(pinhole_camera camera)
+{
+ // Apply translations
+ camera.center_point += camera.translations;
+
+ // Apply rotations
+ // We initialize our vector basis as normalized vectors
+ // in each axis * our deformations vector
+ camera.base_x = vec3(camera.deformations.x, 0, 0);
+ camera.base_y = vec3(0, camera.deformations.y, 0);
+ camera.base_z = vec3(0, 0, camera.deformations.z);
+
+
+ // Then we rotate them around following our rotations vector:
+ // First save these values to avoid redundancy
+ float cosx = cos(camera.rotations.x);
+ float cosy = cos(camera.rotations.y);
+ float cosz = cos(camera.rotations.z);
+ float sinx = sin(camera.rotations.x);
+ float siny = sin(camera.rotations.y);
+ float sinz = sin(camera.rotations.z);
+
+ // Declare a buffer vector we will use to apply multiple changes at once
+ vec3 tmp = vec3(0);
+
+ // Rotations for base_x:
+ tmp = camera.base_x;
+ // X axis:
+ tmp.y = camera.base_x.y * cosx - camera.base_x.z * sinx;
+ tmp.z = camera.base_x.y * sinx + camera.base_x.z * cosx;
+ camera.base_x = tmp;
+ // Y axis:
+ tmp.x = camera.base_x.x * cosy + camera.base_x.z * siny;
+ tmp.z = -camera.base_x.x * siny + camera.base_x.z * cosy;
+ camera.base_x = tmp;
+ // Z axis:
+ tmp.x = camera.base_x.x * cosz - camera.base_x.y * sinz;
+ tmp.y = camera.base_x.x * sinz + camera.base_x.y * cosz;
+ camera.base_x = tmp;
+
+ // Rotations for base_y:
+ tmp = camera.base_y;
+ // X axis:
+ tmp.y = camera.base_y.y * cosx - camera.base_y.z * sinx;
+ tmp.z = camera.base_y.y * sinx + camera.base_y.z * cosx;
+ camera.base_y = tmp;
+ // Y axis:
+ tmp.x = camera.base_y.x * cosy + camera.base_y.z * siny;
+ tmp.z = -camera.base_y.x * siny + camera.base_y.z * cosy;
+ camera.base_y = tmp;
+ // Z axis:
+ tmp.x = camera.base_y.x * cosz - camera.base_y.y * sinz;
+ tmp.y = camera.base_y.x * sinz + camera.base_y.y * cosz;
+ camera.base_y = tmp;
+
+ // Rotations for base_z:
+ tmp = camera.base_z;
+ // X axis:
+ tmp.y = camera.base_z.y * cosx - camera.base_z.z * sinx;
+ tmp.z = camera.base_z.y * sinx + camera.base_z.z * cosx;
+ camera.base_z = tmp;
+ // Y axis:
+ tmp.x = camera.base_z.x * cosy + camera.base_z.z * siny;
+ tmp.z = -camera.base_z.x * siny + camera.base_z.z * cosy;
+ camera.base_z = tmp;
+ // Z axis:
+ tmp.x = camera.base_z.x * cosz - camera.base_z.y * sinz;
+ tmp.y = camera.base_z.x * sinz + camera.base_z.y * cosz;
+ camera.base_z = tmp;
+
+ // Now that we have our transformed 3d orthonormal base
+ // we can calculate our focal point
+ camera.focal_point = camera.center_point + camera.base_z * camera.focal_offset;
+
+ // Return our set up camera
+ return camera;
+}
+
+// Gets a pixel from the end of a ray projected to an axis
+vec4 get_pixel_from_projection(float t, int face, pinhole_camera camera, vec3 focal_vector)
+{
+ // If the point we end up in is behind our camera, don't "render" it
+ if (t < 1)
+ {
+ return vec4(0);
+ }
+
+ // Then we multiply our focal vector by t and add our focal point to it
+ // to end up in a point inside the window plane
+ vec3 intersection = focal_vector * t + camera.focal_point;
+
+
+ // Save necessary coordinates
+ // (different cube faces need different coords)
+ vec2 cam_coords;
+ switch (face)
+ {
+ case 0:
+ cam_coords = intersection.xy;
+ break;
+ case 1:
+ cam_coords = intersection.xy;
+ break;
+ case 2:
+ cam_coords = intersection.zy;
+ break;
+ case 3:
+ cam_coords = intersection.zy;
+ break;
+ case 4:
+ cam_coords = intersection.zx;
+ break;
+ case 5:
+ cam_coords = intersection.zx;
+ break;
+ }
+
+ if (window_size.x > window_size.y)
+ {
+ cam_coords.x /= window_size.y/float(window_size.x);
+ cam_coords.xy += window_center.xy;
+ }
+ else if (window_size.x < window_size.y)
+ {
+ cam_coords.y /= window_size.x/float(window_size.y);
+ cam_coords.xy += window_center.xy;
+ }
+ // If pixel is outside of our window region
+ // return a completely transparent color
+ if (cam_coords.x >=window_size.x-1 ||
+ cam_coords.y >=window_size.y-1 ||
+ cam_coords.x <=0 || cam_coords.y <=0)
+ {
+ return vec4(0);
+ }
+
+ // Fetch the pixel
+ vec4 pixel = texelFetch(tex, ivec2(cam_coords), 0);
+
+ return pixel;
+}
+
+// Combines colors using alpha
+// Got this from https://stackoverflow.com/questions/64701745/how-to-blend-colours-with-transparency
+// Not sure how it works honestly lol
+vec4 alpha_composite(vec4 color1, vec4 color2)
+{
+ float ar = color1.w + color2.w - (color1.w * color2.w);
+ float asr = color2.w / ar;
+ float a1 = 1 - asr;
+ float a2 = asr * (1 - color1.w);
+ float ab = asr * color1.w;
+ vec4 outcolor;
+ outcolor.xyz = color1.xyz * a1 + color2.xyz * a2 + color2.xyz * ab;
+ outcolor.w = ar;
+ return outcolor;
+}
+
+// Gets a pixel through the camera using coords as coordinates in
+// the camera plane
+vec4 get_pixel_through_camera(vec2 coords, pinhole_camera camera)
+{
+ // Offset coords
+ coords -= window_center;
+
+ // Find the pixel 3d position using the camera vector basis
+ vec3 pixel_3dposition = camera.center_point
+ + coords.x * camera.base_x
+ + coords.y * camera.base_y;
+
+ // Get the vector going from the focal point to the pixel in 3d sapace
+ vec3 focal_vector = pixel_3dposition - camera.focal_point;
+
+ // We need 6 planes, one for each face of the cube, they all follow the plane EQ
+ // ax + by + cz + d
+ float a[] = {0,0,
+ 1,1,
+ 0,0};
+ float b[] = {0,0,
+ 0,0,
+ 1,1};
+ float c[] = {1,1,
+ 0,0,
+ 0,0};
+ float d[] = {-wss/2.0,wss/2.0,
+ -wss/2.0,wss/2.0,
+ -wss/2.0,wss/2.0};
+
+ // Then there's a line going from our focal point to each of the planes
+ // which we can describe as:
+ // x(t) = focal_point.x + focal_vector.x * t
+ // y(t) = focal_point.y + focal_vector.y * t
+ // z(t) = focal_point.z + focal_vector.z * t
+ // We substitute x, y and z with x(t), y(t) and z(t) in the plane EQ
+ // Solving for t we get:
+ vec2 t[6]; // we use a vec2 to also store the plane that was hit
+ for (int i = 0; i < t.length(); i++)
+ {
+ t[i].x = (d[i]
+ - a[i]*camera.focal_point.x
+ - b[i]*camera.focal_point.y
+ - c[i]*camera.focal_point.z)
+ / (a[i]*focal_vector.x
+ + b[i]*focal_vector.y
+ + c[i]*focal_vector.z);
+ t[i].y = i;
+ }
+
+ // Bubble sort to know which intersections happen first
+ for (int i = 0; i < t.length(); i++)
+ {
+ for (int j = 0; j < t.length(); j++)
+ {
+ if (t [j].x > t[j+1].x)
+ {
+ vec2 tmp = t[j];
+ t[j] = t[j+1];
+ t[j+1] = tmp;
+ }
+ }
+ }
+
+ // Then we go through each one of the intersections in order
+ // and mix pixels together using alpha
+ vec4 blended_pixels = vec4(0);
+ for (int i = 0; i < t.length(); i++)
+ {
+ // We get the pixel through projection
+ vec4 projection_pixel = get_pixel_from_projection(t[i].x,
+ int(t[i].y),
+ camera,
+ focal_vector);
+ // Only blend non fully transparent pixels
+ if (projection_pixel.w > 0.0)
+ {
+ // Blend the pixel using alpha
+ blended_pixels = alpha_composite(projection_pixel, blended_pixels);
+ }
+ }
+ return blended_pixels;
+}
+
+// Main function
+vec4 window_shader() {
+ pinhole_camera transformed_cam = setup_camera(window_cam);
+ return(get_pixel_through_camera(texcoord, transformed_cam));
+}
diff --git a/config/picom/shaders/default_anim.glsl b/config/picom/shaders/default_anim.glsl
new file mode 100644
index 0000000..e4f43ed
--- /dev/null
+++ b/config/picom/shaders/default_anim.glsl
@@ -0,0 +1,70 @@
+#version 330
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+/*
+These shaders use a sorta hacky way to use the changing
+window opacity you might set on picom.conf animation rules
+to perform animations.
+
+Basically, when a window get's mapped, we make it's alpha
+go from 0 to 1, so, using the default_post_processing to get that alpha
+we can get a variable going from 0 (start of mapping animation)
+to 1 (end of mapping animation)
+
+You can also set up your alpha value to go from 1 to 0 in picom when
+a window is closed, effectively reversing the animations described here
+*/
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// If you have semitransparent windows (like a terminal)
+// You can use the below function to add an opacity threshold where the
+// animation won't apply. For example, if you had your terminal
+// configured to have 0.8 opacity, you'd set the below variable to 0.8
+float max_opacity = 1;
+float opacity_threshold(float opacity)
+{
+ // if statement jic?
+ if (opacity >= max_opacity)
+ {
+ return 1.0;
+ }
+ else
+ {
+ return min(1, opacity/max_opacity);
+ }
+
+}
+
+vec4 anim(float time) {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ return c;
+}
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ float opacity = opacity_threshold(c.w);
+ if (opacity == 0.0)
+ {
+ return c;
+ }
+ vec4 anim_c = anim(opacity);
+ return default_post_processing(anim_c);
+}
+
diff --git a/config/picom/shaders/dither.glsl b/config/picom/shaders/dither.glsl
new file mode 100644
index 0000000..6a2a285
--- /dev/null
+++ b/config/picom/shaders/dither.glsl
@@ -0,0 +1,127 @@
+#version 430
+
+bool monochrome = false; // Whether to apply a black & white filter to the window
+
+// You can modify the list of patterns to whatever you like, the code will
+// adapt to it as long as it is a list of equally sized 2D arrays
+// This example shows a dither pattern list that uses numbers other than
+// 0 and 1 for more color variation
+// Dither patterns
+float dither [][][] = { {{0 , 0 },
+ {0 , 0 }},
+
+ {{0.5, 0 },
+ {0 , 0 }},
+
+ {{0.5, 0 },
+ {0 , 0.5}},
+
+ {{0.5, 0.5},
+ {0 , 0.5}},
+
+ {{0.5, 0.5},
+ {0.5, 0.5}},
+
+ {{1 , 0.5},
+ {0.5,0.5}},
+
+ {{1 , 0.5},
+ {0.5, 1 }},
+
+ {{1 , 1 },
+ {0.5, 1 }},
+
+ {{1 , 1 },
+ {1 , 1 }} };
+
+// Some more props that depend on the dither patterns
+float bit_depth = dither.length() - 1.0;
+int block_size = dither[0].length();
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Returns a monochromatic pixel
+vec4 to_monochrome (vec4 pixel)
+{
+ float brightness = (pixel.x + pixel.y + pixel.z)/3;
+ return vec4(vec3(brightness), pixel.w);
+}
+
+vec4 window_shader() {
+ // Alpha for the current pixel
+ float alpha;
+
+ // Relative block position
+ ivec2 block_pos;
+ block_pos.x = int(texcoord.x) % block_size;
+ block_pos.y = int(texcoord.y) % block_size;
+
+ // Current block total color
+ vec3 block_color = vec3(0,0,0);
+
+ // We will iterate over all the pixels in the block
+ // and save it to this variable
+ vec4 pixel;
+ for (int y = 0; y < block_size; y += 1)
+ {
+ for (int x = 0; x < block_size; x += 1)
+ {
+ // Apply default post processing picom things and
+ // add color values after.
+ pixel = texelFetch(tex, ivec2(texcoord.x+x-block_pos.x,texcoord.y+y-block_pos.y), 0);
+ pixel = default_post_processing(pixel);
+ if (monochrome)
+ {
+ pixel = to_monochrome(pixel);
+ block_color.x += pixel.x;
+ }
+ else
+ {
+ block_color.x += pixel.x;
+ block_color.y += pixel.y;
+ block_color.z += pixel.z;
+ }
+
+ // If we are on the current pixel, save the alpha value
+ if (x == 0 && y == 0)
+ {
+ alpha = pixel.w;
+ }
+ }
+ }
+ // Normalize block colors and quantify them
+ block_color.x = block_color.x/float(block_size*block_size);
+ block_color.x = round(block_color.x*bit_depth);
+
+ // Get the pixel colors using our dither pattern
+ block_color.x = dither[int(block_color.x)][block_pos.y][block_pos.x];
+
+ if (monochrome)
+ {
+ block_color.yz = block_color.xx;
+ }
+ else
+ {
+ block_color.y = block_color.y/float(block_size*block_size);
+ block_color.y = round(block_color.y*bit_depth);
+
+ block_color.z = block_color.z/float(block_size*block_size);
+ block_color.z = round(block_color.z*bit_depth);
+
+ block_color.y = dither[int(block_color.y)][block_pos.y][block_pos.x];
+ block_color.z = dither[int(block_color.z)][block_pos.y][block_pos.x];
+ }
+
+ // Set the final value for our pixel
+ pixel = vec4(block_color.x, block_color.y, block_color.z, alpha);
+ return pixel;
+}
diff --git a/config/picom/shaders/glass.glsl b/config/picom/shaders/glass.glsl
new file mode 100644
index 0000000..a37972e
--- /dev/null
+++ b/config/picom/shaders/glass.glsl
@@ -0,0 +1,165 @@
+#version 330
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+/*
+These shaders use a sorta hacky way to use the changing
+window opacity you might set on picom.conf animation rules
+to perform animations.
+
+Basically, when a window get's mapped, we make it's alpha
+go from 0 to 1, so, using the default_post_processing to get that alpha
+we can get a variable going from 0 (start of mapping animation)
+to 1 (end of mapping animation)
+
+You can also set up your alpha value to go from 1 to 0 in picom when
+a window is closed, effectively reversing the animations described here
+*/
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// If you have semitransparent windows (like a terminal)
+// You can use the below function to add an opacity threshold where the
+// animation won't apply. For example, if you had your terminal
+// configured to have 0.8 opacity, you'd set the below variable to 0.8
+float max_opacity = 0.8;
+float opacity_threshold(float opacity)
+{
+ // if statement jic?
+ if (opacity >= max_opacity)
+ {
+ return 1.0;
+ }
+ else
+ {
+ return min(1, opacity/max_opacity);
+ }
+
+}
+
+// Pseudo-random function (from original shader)
+float random(vec2 st) {
+ return fract(sin(dot(st.xy, vec2(12.9898,78.233))) * 43758.5453123);
+}
+
+float PI = 3.1415926535;
+float TWO_PI = 2.0 * PI;
+
+// NEW anim function: Glass-Shard Shatter
+vec4 anim(float animation_progress) {
+ vec4 out_color = vec4(0.0); // Default to transparent
+
+ // --- Shard Parameters ---
+ float num_shards = 20.0; // Number of angular shards
+ vec2 impact_point = window_center;
+
+ // --- Fragment's Relation to Impact Point & Shard ID ---
+ vec2 vec_frag_to_impact = texcoord - impact_point;
+ float dist_frag_to_impact = length(vec_frag_to_impact);
+ float angle_frag = atan(vec_frag_to_impact.y, vec_frag_to_impact.x); // Range: -PI to PI
+ if (angle_frag < 0.0) {
+ angle_frag += TWO_PI; // Normalize to 0 to 2*PI
+ }
+ float shard_id = floor(angle_frag / (TWO_PI / num_shards));
+
+ // --- Staggered Animation Timing for each Shard ---
+ // Use random for a less ordered shatter
+ float shard_delay_normalized = random(vec2(shard_id, shard_id * 0.31));
+ // float shard_delay_normalized = shard_id / num_shards; // For a sweep
+
+ float individual_shard_anim_duration = 0.7; // How long each shard takes to animate
+ float ripple_spread_factor = 1.0 - individual_shard_anim_duration;
+
+ float stagger_start_progress = shard_delay_normalized * ripple_spread_factor;
+ float stagger_end_progress = stagger_start_progress + individual_shard_anim_duration;
+
+ // shard_anim_progress: 0.0 (shard starts moving in) -> 1.0 (shard is in place)
+ float shard_anim_progress = smoothstep(stagger_start_progress, stagger_end_progress, animation_progress);
+
+ if (shard_anim_progress < 0.001) { // Shard is not yet visible or fully shattered away
+ return vec4(0.0); // Fully transparent
+ }
+
+ // --- Shard Transformation Parameters ---
+ // current_displacement_factor: 1.0 (max shatter) -> 0.0 (assembled)
+ float current_displacement_factor = 1.0 - shard_anim_progress;
+
+ // Max translation (e.g., 30% of half window width)
+ float max_translation_dist = length(vec2(window_size) * 0.5) * 0.3;
+ // Max rotation (e.g., 25 degrees)
+ float max_rotation_angle_rad = (PI / 180.0) * 25.0 * random(vec2(shard_id * 0.7, shard_id)); // Add some randomness to rotation
+
+ // Direction for this shard (center angle of the shard sector)
+ float shard_center_angle = (shard_id + 0.5) * (TWO_PI / num_shards);
+ vec2 shard_radial_dir = vec2(cos(shard_center_angle), sin(shard_center_angle));
+
+ vec2 translation_offset = shard_radial_dir * max_translation_dist * current_displacement_factor;
+ float current_rotation = max_rotation_angle_rad * current_displacement_factor;
+
+ // --- Inverse Transformation for Sampling ---
+ // We are at `texcoord` on screen. Find where this point came from on the original texture.
+ // 1. Undo translation
+ vec2 p1_translated_back = texcoord - translation_offset;
+
+ // 2. Undo rotation around impact_point
+ vec2 p1_rel_to_impact = p1_translated_back - impact_point;
+ float cos_rot = cos(current_rotation); // Rotate by +angle to undo shatter rotation by -angle
+ float sin_rot = sin(current_rotation); // (or vice-versa, depends on convention)
+ // Let's assume shatter rotates by -current_rotation
+ // So to undo, rotate by +current_rotation
+ mat2 rot_matrix = mat2(cos_rot, -sin_rot, sin_rot, cos_rot);
+ vec2 p2_rotated_back = rot_matrix * p1_rel_to_impact;
+ vec2 sample_coord = p2_rotated_back + impact_point;
+
+ // --- Boundary Check & Texture Fetch ---
+ if (sample_coord.x >= 0.0 && sample_coord.x < float(window_size.x) &&
+ sample_coord.y >= 0.0 && sample_coord.y < float(window_size.y)) {
+
+ // --- Chromatic Aberration ---
+ float ca_strength = 0.008 * current_displacement_factor; // Stronger when more shattered
+ vec2 ca_offset_dir = shard_radial_dir; // Radial aberration
+ // vec2 ca_offset_dir = vec2(-shard_radial_dir.y, shard_radial_dir.x); // Tangential
+
+ vec2 r_sample = sample_coord + ca_offset_dir * ca_strength * float(window_size.x);
+ vec2 b_sample = sample_coord - ca_offset_dir * ca_strength * float(window_size.x);
+
+ out_color.r = texelFetch(tex, ivec2(r_sample), 0).r;
+ out_color.g = texelFetch(tex, ivec2(sample_coord), 0).g; // Green channel from center
+ out_color.b = texelFetch(tex, ivec2(b_sample), 0).b;
+ out_color.a = texelFetch(tex, ivec2(sample_coord), 0).a; // Base alpha from original texture
+
+ } else {
+ out_color.a = 0.0; // Sampled point is outside original texture
+ }
+
+ // Modulate final alpha by shard's animation progress
+ out_color.a *= shard_anim_progress;
+ return out_color;
+}
+
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ float opacity = opacity_threshold(c.w);
+ if (opacity == 0.0)
+ {
+ return c;
+ }
+ vec4 anim_c = anim(opacity);
+ return default_post_processing(anim_c);
+}
diff --git a/config/picom/shaders/glitch.glsl b/config/picom/shaders/glitch.glsl
new file mode 100644
index 0000000..be28f78
--- /dev/null
+++ b/config/picom/shaders/glitch.glsl
@@ -0,0 +1,86 @@
+#version 330
+
+
+int delta = 20;
+float barh = 0.02;
+float barw = 0.4;
+int nbar = 16;
+
+float maxoff = 5;
+float minoff = 2;
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+ivec2 window_size = textureSize(tex, 0);
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+uniform float time; // Time in miliseconds.
+
+float alpha = round(time/delta); // Like time, but in seconds and resets to
+
+// Pseudo-random function (from original shader)
+float random(float n) {
+ return fract(sin(n) * 43758.5453f);
+}
+
+float get_box() {
+ float n = random(alpha)*(nbar);
+
+ for(int i=0;i<n;i++){
+ float y = random(mod(alpha, 2048)+i) * window_size.y;
+ float x = random(mod(alpha+128, 2048)+i) * window_size.x;
+ float w = random(mod(alpha+64, 2048)+i) * barw*window_size.x;
+ float h = random(mod(alpha+32, 2048)+i) * barh*window_size.y;
+ if (texcoord.y > y && texcoord.y < y + h
+ && texcoord.x > x && texcoord.x < x + w) {
+ return i*w*h*y*x*n;
+ }
+ }
+ return -1.0f;
+}
+
+float rand_offset(float b) {
+ return (random(b*64) - 0.5) * (maxoff*2);
+}
+
+vec4 window_shader() {
+ float b = get_box();
+
+ if (b == -1.0) {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ return default_post_processing(c);
+ }
+ //b = random(mod(alpha, 2000));
+
+ // Offsets in pixels for each color
+ vec2 uvr = vec2(rand_offset(b*1), rand_offset(b*6));
+ vec2 uvg = vec2(rand_offset(b*2),rand_offset(b*7));
+ vec2 uvb = vec2(rand_offset(b*3),rand_offset(b*8));
+
+ // Calculate offset coords
+ uvr += texcoord;
+ uvg += texcoord;
+ uvb += texcoord;
+
+ // Fetch colors using offset coords
+ vec3 offset_color;
+ offset_color.x = texelFetch(tex, ivec2(uvr), 0).x;
+ offset_color.y = texelFetch(tex, ivec2(uvg), 0).y;
+ offset_color.z = texelFetch(tex, ivec2(uvb), 0).z;
+
+ // Set the new color
+ vec4 c;
+ c.w = texelFetch(tex, ivec2(uvr), 0).w;
+ c.xyz = offset_color;
+
+ return default_post_processing(c);
+}
+
diff --git a/config/picom/shaders/glitch_animation.glsl b/config/picom/shaders/glitch_animation.glsl
new file mode 100644
index 0000000..be1e16c
--- /dev/null
+++ b/config/picom/shaders/glitch_animation.glsl
@@ -0,0 +1,119 @@
+#version 330
+
+float maxoff = 10;
+float minoff = 2;
+float hue = 0.3;
+
+float block_max = 500;
+float block_min = 200;
+
+in vec2 texcoord; // texture coordinate of the fragment
+uniform sampler2D tex; // texture of the window
+
+vec4 default_post_processing(vec4 c);
+
+uniform float time; // Time in miliseconds.
+
+float max_opacity = 0.9;
+float opacity_threshold(float opacity)
+{
+ // if statement jic?
+ if (opacity >= max_opacity)
+ {
+ return 1.0;
+ }
+ else
+ {
+ return min(1, opacity/max_opacity);
+ }
+
+}
+
+// Pseudo-random function (from original shader)
+float random(float n) {
+ return fract(sin(n) * 43758.5453f);
+}
+
+float rand_offset(float b, float off) {
+ return (random(b*64) - 0.5) * (off*2);
+}
+
+vec3 hueShift( vec3 color, float hueAdjust ){
+
+ const vec3 kRGBToYPrime = vec3 (0.299, 0.587, 0.114);
+ const vec3 kRGBToI = vec3 (0.596, -0.275, -0.321);
+ const vec3 kRGBToQ = vec3 (0.212, -0.523, 0.311);
+
+ const vec3 kYIQToR = vec3 (1.0, 0.956, 0.621);
+ const vec3 kYIQToG = vec3 (1.0, -0.272, -0.647);
+ const vec3 kYIQToB = vec3 (1.0, -1.107, 1.704);
+
+ float YPrime = dot (color, kRGBToYPrime);
+ float I = dot (color, kRGBToI);
+ float Q = dot (color, kRGBToQ);
+ float hue = atan (Q, I);
+ float chroma = sqrt (I * I + Q * Q);
+
+ hue += hueAdjust;
+
+ Q = chroma * sin (hue);
+ I = chroma * cos (hue);
+
+ vec3 yIQ = vec3 (YPrime, I, Q);
+
+ return vec3( dot (yIQ, kYIQToR), dot (yIQ, kYIQToG), dot (yIQ, kYIQToB) );
+
+}
+
+vec4 anim(float alpha) {
+ float block = mix(block_max, block_min, alpha);
+ vec2 bs = floor(texcoord / block) * block + block/2;
+
+ float b = random(bs.y) * random(mod(time/10000,2));
+
+ float off = mix(maxoff, minoff, alpha);
+ if (b > alpha) {
+ off = 0;
+ }
+
+ // Offsets in pixels for each color
+ vec2 uvr = vec2(rand_offset(b*1, off), rand_offset(b*6, off));
+ vec2 uvg = vec2(rand_offset(b*2, off), rand_offset(b*7, off));
+ vec2 uvb = vec2(rand_offset(b*3, off), rand_offset(b*8, off));
+
+ // Calculate offset coords
+ uvr += texcoord;
+ uvg += texcoord;
+ uvb += texcoord;
+
+ // Fetch colors using offset coords
+ vec3 offset_color;
+ offset_color.x = texelFetch(tex, ivec2(uvr), 0).x;
+ offset_color.y = texelFetch(tex, ivec2(uvg), 0).y;
+
+ offset_color.x = hueShift(texelFetch(tex, ivec2(uvr), 0).xyz, hue).x;
+ offset_color.y = hueShift(texelFetch(tex, ivec2(uvg), 0).xyz, hue).y;
+ offset_color.z = hueShift(texelFetch(tex, ivec2(uvb), 0).xyz, hue).z;
+
+ offset_color.xyz = hueShift(offset_color.xyz, -hue);
+
+ // Set the new color
+ vec4 c;
+ c.w = texelFetch(tex, ivec2(uvr), 0).w;
+ c.xyz = offset_color;
+
+ return default_post_processing(c);
+}
+
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ float opacity = opacity_threshold(c.w);
+ if (opacity != 1.0)
+ {
+ c = anim(opacity);
+ }
+ //c = anim(opacity);
+ return default_post_processing(c);
+}
+
diff --git a/config/picom/shaders/matrix_dissolve.glsl b/config/picom/shaders/matrix_dissolve.glsl
new file mode 100644
index 0000000..aaa6c4b
--- /dev/null
+++ b/config/picom/shaders/matrix_dissolve.glsl
@@ -0,0 +1,78 @@
+#version 330
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+/*
+These shaders use a sorta hacky way to use the changing
+window opacity you might set on picom.conf animation rules
+to perform animations.
+
+Basically, when a window get's mapped, we make it's alpha
+go from 0 to 1, so, using the default_post_processing to get that alpha
+we can get a variable going from 0 (start of mapping animation)
+to 1 (end of mapping animation)
+
+You can also set up your alpha value to go from 1 to 0 in picom when
+a window is closed, effectively reversing the animations described here
+*/
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+// Pseudo-random function
+float random(vec2 st) {
+ return fract(sin(dot(st.xy, vec2(12.9898,78.233))) * 43758.5453123);
+}
+
+// Creates vertical scanlines
+float scanline(vec2 uv, float time) {
+ return sin(uv.y * 200.0 + time * 10.0) * 0.5 + 0.5;
+}
+
+vec4 anim(float time) {
+ vec2 uv = texcoord / vec2(window_size);
+
+ // Adjust square size (smaller number = more squares)
+ float square_size = 4.0;
+
+ // Calculate grid position
+ vec2 square_pos = floor(texcoord / square_size);
+
+ // Generate random value for this square
+ float index = random(square_pos);
+
+ // Get original color
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+
+ // Create threshold for dissolve
+ float threshold = (1.0 - time) * 1.2; // The 1.2 creates a slight overlap
+
+ // If the random index is greater than our threshold, make pixel transparent
+ if (index > threshold) {
+ c.a = 0.0;
+ }
+
+ return c;
+}
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ if (c.w != 1.0)
+ {
+ c = anim(1.0-c.w);
+ }
+ return default_post_processing(c);
+}
diff --git a/config/picom/shaders/pixelize.glsl b/config/picom/shaders/pixelize.glsl
new file mode 100644
index 0000000..8a9c72e
--- /dev/null
+++ b/config/picom/shaders/pixelize.glsl
@@ -0,0 +1,72 @@
+#version 330
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+/*
+These shaders use a sorta hacky way to use the changing
+window opacity you might set on picom.conf animation rules
+to perform animations.
+
+Basically, when a window get's mapped, we make it's alpha
+go from 0 to 1, so, using the default_post_processing to get that alpha
+we can get a variable going from 0 (start of mapping animation)
+to 1 (end of mapping animation)
+
+You can also set up your alpha value to go from 1 to 0 in picom when
+a window is closed, effectively reversing the animations described here
+*/
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// If you have semitransparent windows (like a terminal)
+// You can use the below function to add an opacity threshold where the
+// animation won't apply. For example, if you had your terminal
+// configured to have 0.8 opacity, you'd set the below variable to 0.8
+float max_opacity = 0.9;
+float opacity_threshold(float opacity)
+{
+ // if statement jic?
+ if (opacity >= max_opacity)
+ {
+ return 1.0;
+ }
+ else
+ {
+ return min(1, opacity/max_opacity);
+ }
+
+}
+
+vec4 anim(float time) {
+// block size shrinks from 40→1
+ float block = mix(40.0, 1.0, time);
+ vec2 uvb = floor(texcoord / block) * block + block/2;
+ vec4 c = texelFetch(tex, ivec2(uvb), 0);
+ return c;
+}
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ float opacity = opacity_threshold(c.w);
+ if (opacity != 1.0)
+ {
+ c = anim(opacity);
+ }
+ return default_post_processing(c);
+}
+
diff --git a/config/picom/shaders/pixelize_median.glsl b/config/picom/shaders/pixelize_median.glsl
new file mode 100755
index 0000000..9d695aa
--- /dev/null
+++ b/config/picom/shaders/pixelize_median.glsl
@@ -0,0 +1,85 @@
+#version 330
+
+#define vec vec3
+#define toVec(x) x.rgb
+
+#define s2(a, b) temp = a; a = min(a, b); b = max(temp, b);
+#define mn3(a, b, c) s2(a, b); s2(a, c);
+#define mx3(a, b, c) s2(b, c); s2(a, c);
+
+#define mnmx3(a, b, c) mx3(a, b, c); s2(a, b); // 3 exchanges
+#define mnmx4(a, b, c, d) s2(a, b); s2(c, d); s2(a, c); s2(b, d); // 4 exchanges
+#define mnmx5(a, b, c, d, e) s2(a, b); s2(c, d); mn3(a, c, e); mx3(b, d, e); // 6 exchanges
+#define mnmx6(a, b, c, d, e, f) s2(a, d); s2(b, e); s2(c, f); mn3(a, b, c); mx3(d, e, f); // 7 exchanges
+
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+/*
+These shaders use a sorta hacky way to use the changing
+window opacity you might set on picom.conf animation rules
+to perform animations.
+
+Basically, when a window get's mapped, we make it's alpha
+go from 0 to 1, so, using the default_post_processing to get that alpha
+we can get a variable going from 0 (start of mapping animation)
+to 1 (end of mapping animation)
+
+You can also set up your alpha value to go from 1 to 0 in picom when
+a window is closed, effectively reversing the animations described here
+*/
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// If you have semitransparent windows (like a terminal)
+// You can use the below function to add an opacity threshold where the
+// animation won't apply. For example, if you had your terminal
+// configured to have 0.8 opacity, you'd set the below variable to 0.8
+float max_opacity = 0.9;
+float opacity_threshold(float opacity)
+{
+ // if statement jic?
+ if (opacity >= max_opacity)
+ {
+ return 1.0;
+ }
+ else
+ {
+ return min(1, opacity/max_opacity);
+ }
+
+}
+
+vec4 anim(float time) {
+// block size shrinks from 40→1
+ float block = mix(40.0, 1.0, time);
+ vec2 uvb = floor(texcoord / block) * block + block/2;
+ vec4 c = texelFetch(tex, ivec2(uvb), 0);
+ return c;
+}
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ float opacity = opacity_threshold(c.w);
+ if (opacity != 1.0)
+ {
+ c = anim(opacity);
+ }
+ return default_post_processing(c);
+}
+
diff --git a/config/picom/shaders/plane.glsl b/config/picom/shaders/plane.glsl
new file mode 100644
index 0000000..b1c6885
--- /dev/null
+++ b/config/picom/shaders/plane.glsl
@@ -0,0 +1,266 @@
+#version 330
+#define PI 3.14159265
+
+// These shaders work by using a pinhole camera and raycasting
+// The window 3d objects will always be (somewhat) centered at (0, 0, 0)
+struct pinhole_camera
+{
+ float focal_offset; // Distance along the Z axis between the camera
+ // center and the focal point. Use negative values
+ // so the image doesn't flip
+ // This kinda works like FOV in games
+
+ // Transformations
+ // Use these to modify the coordinate system of the camera plane
+ vec3 rotations; // Rotations in radians around each axis
+ // The camera plane rotates around
+ // its center point, not the origin
+
+ vec3 translations; // Translations in pixels along each axis
+
+ vec3 deformations; // Deforms the camera. Higher values on each axis
+ // means the window will be squashed in that axis
+
+ // ---------------------------------------------------------------//
+
+ // "Aftervalues"
+ // These will be set later with setup_camera(), leave them as 0
+ vec3 base_x;
+ vec3 base_y;
+ vec3 base_z;
+ vec3 center_point;
+ vec3 focal_point;
+};
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+uniform float time; // Time in miliseconds.
+
+float time_cyclic = mod(time/10000,2); // Like time, but in seconds and resets to
+ // 0 when it hits 2. Useful for using it in
+ // periodic functions like cos and sine
+// Time variables can be used to change transformations over time
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+
+float window_diagonal = length(window_size); // Diagonal of the window
+// Try to keep focal offset and translations proportional to window_size components
+// or window_diagonal as you see fit
+
+pinhole_camera camera =
+pinhole_camera(-window_size.y/2, // Focal offset
+ vec3(0,0,0), // Rotations
+ vec3(0), // Translations
+ vec3(1,1,1), // Deformations
+ // Leave the rest as 0
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here are some presets you can use
+
+// Moves the camera up and down
+pinhole_camera bobbing =
+pinhole_camera(-window_size.y/2,
+ vec3(0,0,0),
+ vec3(0,cos(time_cyclic*PI)*window_size.y/16,-window_size.y/4),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotates camera around the origin
+// Makes the window rotate around the Y axis from the camera's POV
+// (if the window is centered)
+pinhole_camera rotate_around_origin =
+pinhole_camera(-window_diagonal,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(cos(time_cyclic*PI)*window_diagonal,
+ 0,
+ sin(time_cyclic*PI)*window_diagonal),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Rotate camera around its center
+pinhole_camera rotate_around_itself =
+pinhole_camera(-window_diagonal,
+ vec3(0,-time_cyclic*PI-PI/2,0),
+ vec3(0,0,-window_diagonal),
+ vec3(1,1,1),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0),
+ vec3(0));
+
+// Here you can select the preset to use
+pinhole_camera window_cam = rotate_around_origin;
+
+
+
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Sets up a camera by applying transformations and
+// calculating xyz vector basis
+pinhole_camera setup_camera(pinhole_camera camera)
+{
+ // Apply translations
+ camera.center_point += camera.translations;
+
+ // Apply rotations
+ // We initialize our vector basis as normalized vectors
+ // in each axis * our deformations vector
+ camera.base_x = vec3(camera.deformations.x, 0, 0);
+ camera.base_y = vec3(0, camera.deformations.y, 0);
+ camera.base_z = vec3(0, 0, camera.deformations.z);
+
+
+ // Then we rotate them around following our rotations vector:
+ // First save these values to avoid redundancy
+ float cosx = cos(camera.rotations.x);
+ float cosy = cos(camera.rotations.y);
+ float cosz = cos(camera.rotations.z);
+ float sinx = sin(camera.rotations.x);
+ float siny = sin(camera.rotations.y);
+ float sinz = sin(camera.rotations.z);
+
+ // Declare a buffer vector we will use to apply multiple changes at once
+ vec3 tmp = vec3(0);
+
+ // Rotations for base_x:
+ tmp = camera.base_x;
+ // X axis:
+ tmp.y = camera.base_x.y * cosx - camera.base_x.z * sinx;
+ tmp.z = camera.base_x.y * sinx + camera.base_x.z * cosx;
+ camera.base_x = tmp;
+ // Y axis:
+ tmp.x = camera.base_x.x * cosy + camera.base_x.z * siny;
+ tmp.z = -camera.base_x.x * siny + camera.base_x.z * cosy;
+ camera.base_x = tmp;
+ // Z axis:
+ tmp.x = camera.base_x.x * cosz - camera.base_x.y * sinz;
+ tmp.y = camera.base_x.x * sinz + camera.base_x.y * cosz;
+ camera.base_x = tmp;
+
+ // Rotations for base_y:
+ tmp = camera.base_y;
+ // X axis:
+ tmp.y = camera.base_y.y * cosx - camera.base_y.z * sinx;
+ tmp.z = camera.base_y.y * sinx + camera.base_y.z * cosx;
+ camera.base_y = tmp;
+ // Y axis:
+ tmp.x = camera.base_y.x * cosy + camera.base_y.z * siny;
+ tmp.z = -camera.base_y.x * siny + camera.base_y.z * cosy;
+ camera.base_y = tmp;
+ // Z axis:
+ tmp.x = camera.base_y.x * cosz - camera.base_y.y * sinz;
+ tmp.y = camera.base_y.x * sinz + camera.base_y.y * cosz;
+ camera.base_y = tmp;
+
+ // Rotations for base_z:
+ tmp = camera.base_z;
+ // X axis:
+ tmp.y = camera.base_z.y * cosx - camera.base_z.z * sinx;
+ tmp.z = camera.base_z.y * sinx + camera.base_z.z * cosx;
+ camera.base_z = tmp;
+ // Y axis:
+ tmp.x = camera.base_z.x * cosy + camera.base_z.z * siny;
+ tmp.z = -camera.base_z.x * siny + camera.base_z.z * cosy;
+ camera.base_z = tmp;
+ // Z axis:
+ tmp.x = camera.base_z.x * cosz - camera.base_z.y * sinz;
+ tmp.y = camera.base_z.x * sinz + camera.base_z.y * cosz;
+ camera.base_z = tmp;
+
+ // Now that we have our transformed 3d orthonormal base
+ // we can calculate our focal point
+ camera.focal_point = camera.center_point + camera.base_z * camera.focal_offset;
+
+ // Return our set up camera
+ return camera;
+}
+
+vec4 get_pixel_through_camera(vec2 coords, pinhole_camera camera)
+{
+ // Offset coords
+ coords -= window_center;
+
+ // Find the pixel 3d position using the camera vector basis
+ vec3 pixel_3dposition = camera.center_point
+ + coords.x * camera.base_x
+ + coords.y * camera.base_y;
+
+ // Get the vector going from the focal point to the pixel in 3d sapace
+ vec3 focal_vector = pixel_3dposition - camera.focal_point;
+
+ // Let's say we have a plane for our window following the plane equation
+ // ax + by + cz = d
+ float a = 0;
+ float b = 0;
+ float c = 1;
+ float d = 0;
+ // Then there's a line going from our focal point to the plane
+ // which we can describe as:
+ // x(t) = focal_point.x + focal_vector.x * t
+ // y(t) = focal_point.y + focal_vector.y * t
+ // z(t) = focal_point.z + focal_vector.z * t
+ // We substitute x, y and z with x(t), y(t) and z(t) in our plane EQ
+ // Solving for t we get:
+ float t = (d
+ - a*camera.focal_point.x
+ - b*camera.focal_point.y
+ - c*camera.focal_point.z)
+ / (a*focal_vector.x
+ + b*focal_vector.y
+ + c*focal_vector.z);
+
+ // If the point we end up in is behind our camera, don't "render" it
+ if (t < 1)
+ {
+ return vec4(0);
+ }
+
+ // Then we multiply our focal vector by t and add our focal point to it
+ // to end up in a point inside the window plane
+ vec3 intersection = focal_vector * t + camera.focal_point;
+
+ // Save x and y coordinates and add back our initial offset
+ vec2 cam_coords = intersection.xy + window_center;
+
+ // If pixel is outside of our window region
+ // return a completely transparent color
+ if (cam_coords.x >=window_size.x-1 ||
+ cam_coords.y >=window_size.y-1 ||
+ cam_coords.x <=0 || cam_coords.y <=0)
+ {
+ return vec4(0);
+ }
+
+ // Fetch the pixel
+ vec4 pixel = texelFetch(tex, ivec2(cam_coords), 0);
+ return pixel;
+}
+
+vec4 window_shader() {
+ pinhole_camera transformed_cam = setup_camera(window_cam);
+ return(get_pixel_through_camera(texcoord, transformed_cam));
+}
diff --git a/config/picom/shaders/sdf_mask.glsl b/config/picom/shaders/sdf_mask.glsl
new file mode 100644
index 0000000..3e73770
--- /dev/null
+++ b/config/picom/shaders/sdf_mask.glsl
@@ -0,0 +1,131 @@
+#version 330
+
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+
+/*
+These shaders use a sorta hacky way to use the changing
+window opacity you might set on picom.conf animation rules
+to perform animations.
+
+Basically, when a window get's mapped, we make it's alpha
+go from 0 to 1, so, using the default_post_processing to get that alpha
+we can get a variable going from 0 (start of mapping animation)
+to 1 (end of mapping animation)
+
+You can also set up your alpha value to go from 1 to 0 in picom when
+a window is closed, effectively reversing the animations described here
+*/
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// If you have semitransparent windows (like a terminal)
+// You can use the below function to add an opacity threshold where the
+// animation won't apply. For example, if you had your terminal
+// configured to have 0.8 opacity, you'd set the below variable to 0.8
+float max_opacity = 0.8;
+float opacity_threshold(float opacity)
+{
+ // if statement jic?
+ if (opacity >= max_opacity)
+ {
+ return 1.0;
+ }
+ else
+ {
+ return min(1, opacity/max_opacity);
+ }
+
+}
+
+// NEW anim function: Morphing Distance-Field Mask (Wobbly Circle)
+vec4 anim(float progress) {
+
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+
+ // Early exit for fully transparent or fully opaque states
+ if (progress <= 0.001) { // Beginning of reveal / End of conceal
+ c.a = 0.0;
+ return c;
+ }
+ if (progress >= 0.999) { // End of reveal / Beginning of conceal
+ return c; // Original alpha, effect is complete
+ }
+
+ vec2 p_centered = texcoord - vec2(window_center); // Pixel coords relative to center
+
+ // --- SDF Parameters ---
+ // Max radius needed to cover the window from the center to a corner
+ float max_coverage_radius = length(vec2(window_size) * 0.5) * 1.05; // 5% margin
+
+ // Easing for progress (e.g., ease-in: starts slow, speeds up)
+ float eased_progress = progress * progress;
+ // float eased_progress = sqrt(progress); // Alternative: ease-out
+ // float eased_progress = progress; // Alternative: linear
+
+ float base_radius = eased_progress * max_coverage_radius;
+
+ // --- Wobble Parameters ---
+ float angle = atan(p_centered.y, p_centered.x); // Angle of pixel from center
+
+ float spatial_freq = 7.0; // Number of wobbles around circumference
+ float wobble_anim_speed = 10.0; // How fast wobbles change with progress
+ // Wobble amplitude (as a factor of base_radius), decreases as reveal completes
+ float wobble_amplitude_factor = 0.15 * (1.0 - eased_progress * 0.7);
+
+ // Wobble animation phase based on progress
+ float wobble_phase = progress * wobble_anim_speed;
+
+ float radius_offset = sin(angle * spatial_freq + wobble_phase) *
+ base_radius * wobble_amplitude_factor;
+
+ float effective_radius = base_radius + radius_offset;
+
+ // --- SDF Calculation (Circle) ---
+ // Distance from current pixel to the center of the coordinate system (p_centered)
+ float dist_from_center = length(p_centered);
+ // SDF value: negative inside the shape, positive outside
+ float sdf_value = dist_from_center - effective_radius;
+
+ // --- Alpha Masking ---
+ float edge_softness = 15.0; // Softness of the mask edge in pixels
+
+ // Create mask: 1.0 inside (visible), 0.0 outside (transparent)
+ // smoothstep transitions from 0 to 1 as sdf_value goes from 0 to edge_softness
+ // So, for sdf_value < 0 (inside), mask is 1.0.
+ // For sdf_value > edge_softness (far outside), mask is 0.0.
+ float mask = 1.0 - smoothstep(0.0, edge_softness, sdf_value);
+
+ c.a *= mask; // Apply the mask to the original alpha
+
+ return c;
+}
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ c = default_post_processing(c);
+ float opacity = opacity_threshold(c.w);
+ if (opacity == 0.0)
+ {
+ return c;
+ }
+ vec4 anim_c = anim(opacity);
+ if (anim_c.w < max_opacity)
+ {
+ return vec4(0);
+ }
+ return default_post_processing(anim_c);
+}
diff --git a/config/picom/shaders/shiny.glsl b/config/picom/shaders/shiny.glsl
new file mode 100644
index 0000000..16636ac
--- /dev/null
+++ b/config/picom/shaders/shiny.glsl
@@ -0,0 +1,33 @@
+#version 430
+
+// Source: https://github.com/yshui/picom/issues/295#issuecomment-592077997
+
+in vec2 texcoord;
+
+uniform float opacity;
+uniform bool invert_color;
+uniform sampler2D tex;
+uniform float time;
+
+ivec2 window_size = textureSize(tex, 0);
+
+float amt = 10000.0;
+
+vec4 default_post_processing(vec4 c);
+
+vec4 window_shader() {
+ float pct = mod(time, amt) / amt * 1000;
+ float factor = float(max(window_size.x, window_size.y));
+ pct *= factor / 150.0;
+ vec2 pos = texcoord;
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+
+ if (pos.x + pos.y < pct * 4.0 && pos.x + pos.y > pct * 4.0 - .5 * pct
+ || pos.x + pos.y < pct * 4.0 - .8 * pct && pos.x + pos.y > pct * 3.0)
+ c *= vec4(2, 2, 2, 1);
+ if (invert_color)
+ c = vec4(vec3(c.a, c.a, c.a) - vec3(c), c.a);
+
+ c *= opacity;
+ return default_post_processing(c);
+}
diff --git a/config/picom/shaders/terminal_vignette.glsl b/config/picom/shaders/terminal_vignette.glsl
new file mode 100644
index 0000000..4e5aa21
--- /dev/null
+++ b/config/picom/shaders/terminal_vignette.glsl
@@ -0,0 +1,58 @@
+#version 330
+in vec2 texcoord; // texture coordinate of the fragment
+
+uniform sampler2D tex; // texture of the window
+
+ivec2 window_size = textureSize(tex, 0); // Size of the window
+ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
+uniform float shadow_cutoff = 1; // How "early" the shadow starts affecting
+ // pixels close to the edges
+ // I'd keep this value very close to 1
+uniform int shadow_intensity = 3; // Intensity level of the shadow effect (from 1 to 5)
+
+
+// Default window post-processing:
+// 1) invert color
+// 2) opacity / transparency
+// 3) max-brightness clamping
+// 4) rounded corners
+vec4 default_post_processing(vec4 c);
+
+// Darkens a pixels near the edges
+vec4 calc_opacity(vec4 color, vec2 coords)
+{
+ // If shadow intensity is 0, change nothing
+ if (shadow_intensity == 0)
+ {
+ return color;
+ }
+
+ // Get how far the coords are from the center
+ vec2 distances_from_center = abs(window_center - coords);
+
+ // Darken pixels close to the edges of the screen in a polynomial fashion
+ float opacity = 1;
+ opacity *= -pow((distances_from_center.y/window_center.y)*shadow_cutoff,
+ (5/shadow_intensity)*2)+1;
+ opacity *= -pow((distances_from_center.x/window_center.x)*shadow_cutoff,
+ (5/shadow_intensity)*2)+1;
+ color.w *= opacity;
+ color.w = max(1 - color.w, 0.8);
+
+ return color;
+}
+
+
+// Default window shader:
+// 1) fetch the specified pixel
+// 2) apply default post-processing
+vec4 window_shader() {
+ vec4 c = texelFetch(tex, ivec2(texcoord), 0);
+ if (c.x +c.y + c.z < 0.6)
+ {
+ c.w = 1;
+ c = calc_opacity(c,texcoord);
+ }
+
+ return default_post_processing(c);
+}